Mots-clés : trace formulae.
@article{UFA_2017_9_2_a1,
author = {B. A. Babajanov and A. B. Khasanov},
title = {Integration of equation of {Toda} periodic chain kind},
journal = {Ufa mathematical journal},
pages = {17--24},
year = {2017},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a1/}
}
B. A. Babajanov; A. B. Khasanov. Integration of equation of Toda periodic chain kind. Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 17-24. http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a1/
[1] M. Toda, “Waves in nonlinear lattice”, Progress Thoer. Physics, 45, Suppl. (1970), 174–200 | DOI
[2] H. Flaschka, “On the Toda lattice. II”, Progress Theor. Physics, 51:3 (1974), 703–716 | DOI | MR | Zbl
[3] M. Toda, Theory of Nonlinear Lattices, Springer-Verlag, Berlin–Heidelberg–New York, 1981 | Zbl
[4] Manakov S.V., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, Zhurn. eksp. i teoret. fiziki, 67:2 (1974), 543–555
[5] Dubrovin B. A., Matveev V.B., Novikov S.P., “Nelineinye uravneniya tipa Kortevega-de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, Uspekhi mat. nauk, 31:1 (1976), 55–136 | Zbl
[6] Date E., Tanaka S., “Analog of inverse scattering theory for discrete Hill`s equation and exact solutions for the periodic Toda lattice”, Progress Theor. Physics, 55:2 (1976), 217–222 | DOI | MR
[7] Krichever I.M., “Algebraicheskie krivye i nelineinye raznostnye uravneniya”, Uspekhi mat. nauk, 33:4 (1978), 215–216
[8] Samoilenko V.G., Prikarpatskii A.K., “Periodicheskaya zadacha dlya tsepochki Toda”, Ukrainskii mat. zhurnal, 34:4 (1982), 469–475
[9] G. Teschl, Jacobi Operators and Completely Integrable Lattices, Mathematical Surveys and Monographs, 72, AMS, 2000 | MR
[10] P.G. Grinevich, I.A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Amer. Math. Soc. Transl. Ser. 2, 224 (2008), 125–138 | MR | Zbl
[11] B.A. Babajanov, M. Feckan, G.U. Urazbaev, “On the periodic Toda Lattice with self-consistent source”, Communications in Nonlinear Science and Numerical Simulation, 20:3 (2014) | MR
[12] Babazhanov B.A., Khasanov A.B., “O periodicheskoi tsepochke Tody s ntegralnym istochnikom”, TMF, 184:2 (2015), 253–268 | DOI | Zbl
[13] Babazhanov B.A., “Ob odnom metode integrirovaniya periodicheskoi tsepochki Tody”, UzMZh, 2015, no. 2, 16–24
[14] Yamilov R.I., “Usloviya integriruemosti dlya analogov relyativistskoi tsepochki Tody”, Teor. i mat. fiz., 151:1 (2007), 66–80 | DOI | Zbl
[15] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39 (2006), R541–R623 | DOI | MR | Zbl
[16] C. David, G.-J. Niels, A.R. Bishop, A.T. Findikoglu, D. Reago, “A perturbed Toda lattice model for low loss nonlinear transmission lines”, Phys. D: Nonlinear Phenom., 123 (1998), 291–300 | DOI | MR
[17] J. Garnier, F.Kh. Abdullaev, “Soliton dynamics in a random Toda chain”, Phys. Rev. E, 67 (2003), 026609-1 | DOI | MR
[18] H. Hochstadt, “On the theory of Hill's matrices and related inverse spectral problems”, Linear algebra and its applications, 11 (1975), 41–52 | DOI | MR | Zbl
[19] Gradshtein I.S., Ryzhik I.M., Tablitsy integralov, summ, ryadov i proizvedenii, Fiziko-matematicheskaya literatura, M., 1963