Integration of equation of Toda periodic chain kind
Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 17-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we apply the method of the inverse spectral problem to integrating an equation of Toda periodic chain kind. For the one-band case we write out explicit formulae for the solutions to an analogue of Dubrovin system of equations and thus, for our problem. These solutions are expressed in term of Jacobi elliptic functions.
Keywords: Toda chain, discrete Hill operator, inverse spectral problem
Mots-clés : trace formulae.
@article{UFA_2017_9_2_a1,
     author = {B. A. Babajanov and A. B. Khasanov},
     title = {Integration of equation of {Toda} periodic chain kind},
     journal = {Ufa mathematical journal},
     pages = {17--24},
     year = {2017},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a1/}
}
TY  - JOUR
AU  - B. A. Babajanov
AU  - A. B. Khasanov
TI  - Integration of equation of Toda periodic chain kind
JO  - Ufa mathematical journal
PY  - 2017
SP  - 17
EP  - 24
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a1/
LA  - en
ID  - UFA_2017_9_2_a1
ER  - 
%0 Journal Article
%A B. A. Babajanov
%A A. B. Khasanov
%T Integration of equation of Toda periodic chain kind
%J Ufa mathematical journal
%D 2017
%P 17-24
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a1/
%G en
%F UFA_2017_9_2_a1
B. A. Babajanov; A. B. Khasanov. Integration of equation of Toda periodic chain kind. Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 17-24. http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a1/

[1] M. Toda, “Waves in nonlinear lattice”, Progress Thoer. Physics, 45, Suppl. (1970), 174–200 | DOI

[2] H. Flaschka, “On the Toda lattice. II”, Progress Theor. Physics, 51:3 (1974), 703–716 | DOI | MR | Zbl

[3] M. Toda, Theory of Nonlinear Lattices, Springer-Verlag, Berlin–Heidelberg–New York, 1981 | Zbl

[4] Manakov S.V., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, Zhurn. eksp. i teoret. fiziki, 67:2 (1974), 543–555

[5] Dubrovin B. A., Matveev V.B., Novikov S.P., “Nelineinye uravneniya tipa Kortevega-de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, Uspekhi mat. nauk, 31:1 (1976), 55–136 | Zbl

[6] Date E., Tanaka S., “Analog of inverse scattering theory for discrete Hill`s equation and exact solutions for the periodic Toda lattice”, Progress Theor. Physics, 55:2 (1976), 217–222 | DOI | MR

[7] Krichever I.M., “Algebraicheskie krivye i nelineinye raznostnye uravneniya”, Uspekhi mat. nauk, 33:4 (1978), 215–216

[8] Samoilenko V.G., Prikarpatskii A.K., “Periodicheskaya zadacha dlya tsepochki Toda”, Ukrainskii mat. zhurnal, 34:4 (1982), 469–475

[9] G. Teschl, Jacobi Operators and Completely Integrable Lattices, Mathematical Surveys and Monographs, 72, AMS, 2000 | MR

[10] P.G. Grinevich, I.A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Amer. Math. Soc. Transl. Ser. 2, 224 (2008), 125–138 | MR | Zbl

[11] B.A. Babajanov, M. Feckan, G.U. Urazbaev, “On the periodic Toda Lattice with self-consistent source”, Communications in Nonlinear Science and Numerical Simulation, 20:3 (2014) | MR

[12] Babazhanov B.A., Khasanov A.B., “O periodicheskoi tsepochke Tody s ntegralnym istochnikom”, TMF, 184:2 (2015), 253–268 | DOI | Zbl

[13] Babazhanov B.A., “Ob odnom metode integrirovaniya periodicheskoi tsepochki Tody”, UzMZh, 2015, no. 2, 16–24

[14] Yamilov R.I., “Usloviya integriruemosti dlya analogov relyativistskoi tsepochki Tody”, Teor. i mat. fiz., 151:1 (2007), 66–80 | DOI | Zbl

[15] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39 (2006), R541–R623 | DOI | MR | Zbl

[16] C. David, G.-J. Niels, A.R. Bishop, A.T. Findikoglu, D. Reago, “A perturbed Toda lattice model for low loss nonlinear transmission lines”, Phys. D: Nonlinear Phenom., 123 (1998), 291–300 | DOI | MR

[17] J. Garnier, F.Kh. Abdullaev, “Soliton dynamics in a random Toda chain”, Phys. Rev. E, 67 (2003), 026609-1 | DOI | MR

[18] H. Hochstadt, “On the theory of Hill's matrices and related inverse spectral problems”, Linear algebra and its applications, 11 (1975), 41–52 | DOI | MR | Zbl

[19] Gradshtein I.S., Ryzhik I.M., Tablitsy integralov, summ, ryadov i proizvedenii, Fiziko-matematicheskaya literatura, M., 1963