On spectral properties of one boundary value problem with a surface energy dissipation
Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 3-16

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a spectral problem in a bounded domain ${\Omega \subset \mathbb{R}^{m}}$, depending on a bounded operator coefficient $Q>0$ and a dissipation parameter $\alpha>0$. In the general case we establish sufficient conditions ensuring that the problem has a discrete spectrum consisting of countably many isolated eigenvalues of finite multiplicity accumulating at infinity. We also establish the conditions, under which the system of root elements contains an Abel-Lidskii basis in the space $ L_2(\Omega)$. In model one- and two-dimensional problems we establish the localization of the eigenvalues and find critical values of $\alpha$.
Keywords: spectral parameter, quadratic operator pencil, localization of eigenvalues, compact operator, Schatten-von-Neumann classes $S_p$, Abel-Lidskii basis property.
@article{UFA_2017_9_2_a0,
     author = {O. A. Andronova and V. I. Voytitskiy},
     title = {On spectral properties of one boundary value problem with a surface energy dissipation},
     journal = {Ufa mathematical journal},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a0/}
}
TY  - JOUR
AU  - O. A. Andronova
AU  - V. I. Voytitskiy
TI  - On spectral properties of one boundary value problem with a surface energy dissipation
JO  - Ufa mathematical journal
PY  - 2017
SP  - 3
EP  - 16
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a0/
LA  - en
ID  - UFA_2017_9_2_a0
ER  - 
%0 Journal Article
%A O. A. Andronova
%A V. I. Voytitskiy
%T On spectral properties of one boundary value problem with a surface energy dissipation
%J Ufa mathematical journal
%D 2017
%P 3-16
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a0/
%G en
%F UFA_2017_9_2_a0
O. A. Andronova; V. I. Voytitskiy. On spectral properties of one boundary value problem with a surface energy dissipation. Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 3-16. http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a0/