On spectral properties of one boundary value problem with a surface energy dissipation
Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 3-16
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a spectral problem in a bounded domain ${\Omega \subset \mathbb{R}^{m}}$, depending on a bounded operator coefficient $Q>0$ and a dissipation parameter $\alpha>0$. In the general case we establish sufficient conditions ensuring that the problem has a discrete spectrum consisting of countably many isolated eigenvalues of finite multiplicity accumulating at infinity. We also establish the conditions, under which the system of root elements contains an Abel-Lidskii basis in the space $ L_2(\Omega)$. In model one- and two-dimensional problems we establish the localization of the eigenvalues and find critical values of $\alpha$.
Keywords:
spectral parameter, quadratic operator pencil, localization of eigenvalues, compact operator, Schatten-von-Neumann classes $S_p$, Abel-Lidskii basis property.
@article{UFA_2017_9_2_a0,
author = {O. A. Andronova and V. I. Voytitskiy},
title = {On spectral properties of one boundary value problem with a surface energy dissipation},
journal = {Ufa mathematical journal},
pages = {3--16},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a0/}
}
TY - JOUR AU - O. A. Andronova AU - V. I. Voytitskiy TI - On spectral properties of one boundary value problem with a surface energy dissipation JO - Ufa mathematical journal PY - 2017 SP - 3 EP - 16 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a0/ LA - en ID - UFA_2017_9_2_a0 ER -
O. A. Andronova; V. I. Voytitskiy. On spectral properties of one boundary value problem with a surface energy dissipation. Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 3-16. http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a0/