Sharp Hardy type inequalities with weights depending on Bessel function
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 89-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove exact Hardy type inequalities with the weights depending on a Bessel function. We obtain one-dimensional $L^p$-inequalities and provide an example of extending these inequalities for the case of convex domains with a finite inner radius. The proved statements are generalization for the case of arbitrary $p\geqslant2$ of the corresponding inequality proved by F. G. Avkhadiev and K.-J. Wirths for $p=2$.
Keywords: Hardy inequality, Bessel function, distance function, inner radius
Mots-clés : Lamb constant, convex domains.
@article{UFA_2017_9_1_a7,
     author = {R. G. Nasibullin},
     title = {Sharp {Hardy} type inequalities with weights depending on {Bessel} function},
     journal = {Ufa mathematical journal},
     pages = {89--97},
     year = {2017},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a7/}
}
TY  - JOUR
AU  - R. G. Nasibullin
TI  - Sharp Hardy type inequalities with weights depending on Bessel function
JO  - Ufa mathematical journal
PY  - 2017
SP  - 89
EP  - 97
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a7/
LA  - en
ID  - UFA_2017_9_1_a7
ER  - 
%0 Journal Article
%A R. G. Nasibullin
%T Sharp Hardy type inequalities with weights depending on Bessel function
%J Ufa mathematical journal
%D 2017
%P 89-97
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a7/
%G en
%F UFA_2017_9_1_a7
R. G. Nasibullin. Sharp Hardy type inequalities with weights depending on Bessel function. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 89-97. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a7/

[1] V. Levin, “Notes on inequalities. II. On a class of integral inequalities”, Rec. Math. Moscou (N.s.), 1938, no. 4, 309–324

[2] P. R. Beesack, “Hardy's inequality and its extensions”, Pacific J. Math., 11 (1961), 39–61 | DOI | MR | Zbl

[3] G. Talenti, “Osservazioni sopra una classe di disuguaglianze”, Rend. Sem. Mat. Fiz. Milano, 39 (1969), 171–185 | DOI | MR | Zbl

[4] G. Tomaselli, “A class of inequalities”, Boll. Un. Mat. Ital., 2 (1969), 622–631 | MR | Zbl

[5] B. Muckenhoupt, “Hardy's inequality with weights”, Studia Mathematica, 44 (1972), 31–38 | MR | Zbl

[6] G. Sinnamon, V. D. Stepanov, “The weighted Hardy inequality: new proofs and the case $p=1$”, J. London Math. Soc. (2), 54 (1996), 89–101 | DOI | MR | Zbl

[7] F. G. Avkhadiev, K.-J. Wirths, “Sharp Hardy-type inequalities with Lamb's constants”, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 723–736 | MR | Zbl

[8] F. G. Avkhadiev, K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, Z. Angew. Math. Mech., 87:8 (2007), 632–642 | DOI | MR | Zbl

[9] H. Brezis, M. Marcus, “Hardy's inequality revisited”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1–2 (1997), 217–237 | MR | Zbl

[10] F. G. Avkhadiev, K.-J. Wirths, “Weighted Hardy inequalities with sharp constants”, Lobachevskii J. Math., 31 (2010), 1–7 | DOI | MR | Zbl

[11] F. G. Avkhadiev, K.-J. Wirths, “On the best constants for the Brezis-Marcus inequalities in balls”, J. Math. Analysis and Applications, 396:2 (2012), 473–480 | DOI | MR | Zbl

[12] M. Marcus, V. J. Mizel, Y. Pinchover, “On the best constants for Hardy's inequality in $R^n$”, Trans. Amer. Math. Soc., 350 (1998), 3237–3250 | DOI | MR

[13] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548 | DOI | MR | Zbl

[14] J. Tidblom, “A geometrical version of Hardy's inequality for $W^{1,p}_0(\Omega)$”, Proc. Amer. Math. Soc., 132 (2004), 2265–2271 | DOI | MR | Zbl

[15] S. Filippas, V. G. Maz'ya, A. Tertikas, “On a question of Brezis and Marcus”, alc. Var. Partial Differential Equations, 25:4 (2006), 491–501 | DOI | MR | Zbl

[16] Nasibullin R. G., Tukhvatullina A. M., “Neravenstva tipa Khardi s logarifmicheskimi i stepennymi vesami dlya spetsialnogo semeistva nevypuklykh oblastei”, Ufimsk. matem. zhurn., 5:2 (2013), 43–55 | MR

[17] Avkhadiev F. G., Nasibullin R. G., “Neravenstva tipa Khardi v proizvolnykh oblastyakh s konechnym vnutrennim radiusom”, Sib. matem. zhurn., 55:2 (2014), 239–250 | MR | Zbl

[18] Nasibullin R. G., “Tochnost konstant logarifmicheskikh neravenstv tipa Khardi v otkrytykh mnogomernykh oblastyakh”, Uchën. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 155, no. 3, 2013, 111–125 | MR

[19] J. Hersch, “Sur la fréquence fondamentale d'unemembrande vibrante; évaluation par défaut et principe de maximum”, J. Math. Phys. Appl., 11 (1960), 387–413 | DOI | MR | Zbl

[20] L. E. Payne, I. Stakgold, “On the mean value of the fundamental mode in the fixed membrane problem”, Applicable Anal., 3 (1973), 295–306 | DOI | MR | Zbl

[21] D. T. Shum, “On integral inequalities related to Hardy's”, Canada. Math. Bull. Vol., 14:2 (1971), 225–230 | DOI | MR | Zbl

[22] Avkhadiev F. G., “Neravenstva tipa Khardi v ploskikh i prostranstvennykh otkrytykh mnozhestvakh”, Tr. MIAN, 255, 2006, 8–18 | MR | Zbl

[23] F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl

[24] Avkhadiev F. G., Nasibullin R. G., Shafigullin I. K., “Neravenstva tipa Khardi so stepennymi i logarifmicheskimi vesami v oblastyakh evklidova prostranstva”, Izvestiya vuzov. Matem., 2011, no. 9, 90–94 | MR | Zbl