Sharp Hardy type inequalities with weights depending on Bessel function
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 89-97

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove exact Hardy type inequalities with the weights depending on a Bessel function. We obtain one-dimensional $L^p$-inequalities and provide an example of extending these inequalities for the case of convex domains with a finite inner radius. The proved statements are generalization for the case of arbitrary $p\geqslant2$ of the corresponding inequality proved by F. G. Avkhadiev and K.-J. Wirths for $p=2$.
Keywords: Hardy inequality, Bessel function, distance function, inner radius
Mots-clés : Lamb constant, convex domains.
@article{UFA_2017_9_1_a7,
     author = {R. G. Nasibullin},
     title = {Sharp {Hardy} type inequalities with weights depending on {Bessel} function},
     journal = {Ufa mathematical journal},
     pages = {89--97},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a7/}
}
TY  - JOUR
AU  - R. G. Nasibullin
TI  - Sharp Hardy type inequalities with weights depending on Bessel function
JO  - Ufa mathematical journal
PY  - 2017
SP  - 89
EP  - 97
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a7/
LA  - en
ID  - UFA_2017_9_1_a7
ER  - 
%0 Journal Article
%A R. G. Nasibullin
%T Sharp Hardy type inequalities with weights depending on Bessel function
%J Ufa mathematical journal
%D 2017
%P 89-97
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a7/
%G en
%F UFA_2017_9_1_a7
R. G. Nasibullin. Sharp Hardy type inequalities with weights depending on Bessel function. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 89-97. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a7/