Analogue of Bohl theorem for a~class of linear partial differential equations
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 75-88

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence and uniqueness of a solution bounded in the entire space for a class of higher order linear partial differential equations. We prove the theorem on the necessary and sufficient condition for the existence and uniqueness of a bounded solution for a studied class of equations. This theorem is an analogue of the Bohl theorem known in the theory of ordinary differential equations. In a partial case the unique solvability conditions are expressed in terms of the coefficients of the equation and we provide the integral representation for the bounded solution.
Keywords: Bohl theorem, bounded solution, representation of a bounded solution.
Mots-clés : symbol of equation
@article{UFA_2017_9_1_a6,
     author = {E. Mukhamadiev and A. N. Naimov and A. Kh. Sattorov},
     title = {Analogue of {Bohl} theorem for a~class of linear partial differential equations},
     journal = {Ufa mathematical journal},
     pages = {75--88},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a6/}
}
TY  - JOUR
AU  - E. Mukhamadiev
AU  - A. N. Naimov
AU  - A. Kh. Sattorov
TI  - Analogue of Bohl theorem for a~class of linear partial differential equations
JO  - Ufa mathematical journal
PY  - 2017
SP  - 75
EP  - 88
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a6/
LA  - en
ID  - UFA_2017_9_1_a6
ER  - 
%0 Journal Article
%A E. Mukhamadiev
%A A. N. Naimov
%A A. Kh. Sattorov
%T Analogue of Bohl theorem for a~class of linear partial differential equations
%J Ufa mathematical journal
%D 2017
%P 75-88
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a6/
%G en
%F UFA_2017_9_1_a6
E. Mukhamadiev; A. N. Naimov; A. Kh. Sattorov. Analogue of Bohl theorem for a~class of linear partial differential equations. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 75-88. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a6/