Analogue of Bohl theorem for a class of linear partial differential equations
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 75-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the existence and uniqueness of a solution bounded in the entire space for a class of higher order linear partial differential equations. We prove the theorem on the necessary and sufficient condition for the existence and uniqueness of a bounded solution for a studied class of equations. This theorem is an analogue of the Bohl theorem known in the theory of ordinary differential equations. In a partial case the unique solvability conditions are expressed in terms of the coefficients of the equation and we provide the integral representation for the bounded solution.
Keywords: Bohl theorem, bounded solution, representation of a bounded solution.
Mots-clés : symbol of equation
@article{UFA_2017_9_1_a6,
     author = {E. Mukhamadiev and A. N. Naimov and A. Kh. Sattorov},
     title = {Analogue of {Bohl} theorem for a~class of linear partial differential equations},
     journal = {Ufa mathematical journal},
     pages = {75--88},
     year = {2017},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a6/}
}
TY  - JOUR
AU  - E. Mukhamadiev
AU  - A. N. Naimov
AU  - A. Kh. Sattorov
TI  - Analogue of Bohl theorem for a class of linear partial differential equations
JO  - Ufa mathematical journal
PY  - 2017
SP  - 75
EP  - 88
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a6/
LA  - en
ID  - UFA_2017_9_1_a6
ER  - 
%0 Journal Article
%A E. Mukhamadiev
%A A. N. Naimov
%A A. Kh. Sattorov
%T Analogue of Bohl theorem for a class of linear partial differential equations
%J Ufa mathematical journal
%D 2017
%P 75-88
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a6/
%G en
%F UFA_2017_9_1_a6
E. Mukhamadiev; A. N. Naimov; A. Kh. Sattorov. Analogue of Bohl theorem for a class of linear partial differential equations. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 75-88. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a6/

[1] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR

[2] Mukhamadiev E., “K teorii differentsialnykh uravnenii v prostranstve ogranichennykh obobschennykh funktsii”, Izvestiya AN Tadzhikskoi SSR, 110:4 (1988), 77–80 | MR

[3] Shilov G. E., Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965, 328 pp. | MR

[4] Mukhamadiev E., Baizaev S., “Ogranichennye resheniya giperbolicheskikh uravnenii s postoyannymi koeffitsientami”, Izvestiya AN Respubliki Tadzhikistan, 142:1 (2011), 20–25

[5] Mukhamadiev E., Naimov A. N., Sattorov A. Kh., “Ob ogranichennykh resheniyakh odnogo klassa giperbolicheskikh uravnenii na ploskosti”, Differentsialnye uravneniya, 52:1 (2016), 86–93 | DOI | Zbl

[6] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1967, 488 pp. | MR

[7] Meshkov V. Z., “Vesovye differentsialnye neravenstva i ikh primenenie dlya otsenok skorosti ubyvaniya na beskonechnosti reshenii ellipticheskikh uravnenii vtorogo poryadka”, Trudy MIAN SSSR, 190, 1989, 139–158 | MR | Zbl

[8] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981, 512 pp. | MR

[9] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966, 351 pp.

[10] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004, 572 pp.

[11] Kurosh A. G., Kurs vysshei algebry, Nauka, M., 1968, 431 pp. | MR

[12] Demidovich B. P., Maron I. A., Osnovy vychislitelnoi matematiki, Nauka, M., 1966, 664 pp. | MR