Determination of parameters in telegraph equation
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 62-74
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the solvability of the inverse problems on finding a solution $u(x,t)$ and an unknown coefficient $c$ for a telegraph equation $$
u_{tt}-\Delta u +cu=f(x,t).
$$
We prove the theorems on the existence of the regular solutions. The feature of the problems is a presence of new overdetermination conditions for the considered class of equations.
Keywords:
telegraph equation, unknown coefficient, inverse problems, special type integral overdetermination, regular solutions
Mots-clés : existence.
Mots-clés : existence.
@article{UFA_2017_9_1_a5,
author = {A. I. Kozhanov and R. R. Safiullova},
title = {Determination of parameters in telegraph equation},
journal = {Ufa mathematical journal},
pages = {62--74},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a5/}
}
A. I. Kozhanov; R. R. Safiullova. Determination of parameters in telegraph equation. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 62-74. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a5/