Determination of parameters in telegraph equation
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 62-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the solvability of the inverse problems on finding a solution $u(x,t)$ and an unknown coefficient $c$ for a telegraph equation $$ u_{tt}-\Delta u +cu=f(x,t). $$ We prove the theorems on the existence of the regular solutions. The feature of the problems is a presence of new overdetermination conditions for the considered class of equations.
Keywords: telegraph equation, unknown coefficient, inverse problems, special type integral overdetermination, regular solutions
Mots-clés : existence.
@article{UFA_2017_9_1_a5,
     author = {A. I. Kozhanov and R. R. Safiullova},
     title = {Determination of parameters in telegraph equation},
     journal = {Ufa mathematical journal},
     pages = {62--74},
     year = {2017},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a5/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - R. R. Safiullova
TI  - Determination of parameters in telegraph equation
JO  - Ufa mathematical journal
PY  - 2017
SP  - 62
EP  - 74
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a5/
LA  - en
ID  - UFA_2017_9_1_a5
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A R. R. Safiullova
%T Determination of parameters in telegraph equation
%J Ufa mathematical journal
%D 2017
%P 62-74
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a5/
%G en
%F UFA_2017_9_1_a5
A. I. Kozhanov; R. R. Safiullova. Determination of parameters in telegraph equation. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 62-74. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a5/

[1] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[2] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976 | MR

[3] Alekseev G. V., Klassicheskie modeli i metody matematicheskoi fiziki, Dalnauka, Vladivostok, 2011

[4] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe knizhnoe izdatelstvo, Novosibirsk, 2009

[5] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Monograth and Textbooks in Pure and Applied Mathematics, 222, Marcel Dekker Inc., New York, 2000 | MR

[6] Romanov V. G., Ustoichivost v obratnykh zadachakh, Nauchnyi mir, M., 2005 | MR

[7] V. Isakov, Inverse Problem for Partial Differential Equations, Springer-Verlag, 2009 | MR

[8] M. V. Klibanov, A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, 2004 | MR | Zbl

[9] A. Lorenzi, An Introduction to Identification Problems via Funcional Analysis, VSP, Utrecht, 2001

[10] Amirov A. Kh., “K voprosu o razreshimosti obratnykh zadach”, Sib. mat. zhurn., 28:6 (1987), 3–11 | Zbl

[11] Bubnov B. A., O korrektosti kraevykh i obratnykh zadach dlya nekotorykh klassov evolyutsionnykh uravnenii, Avtoref. diss. $\dots$ d. f-m. n., In-t matematiki SO AN SSSR, Novosibirsk, 1989

[12] Koltunovskii O. A., “Obratnye zadachi dlya giperbolicheskikh uravnenii s neizvestnym koeffitsientom v sluchae integralnogo pereopredeleniya”, Matematicheskie zametki SVFU, 15:1 (2008), 55–74

[13] Koltunovskii O. A., “Obratnaya koeffitsientnaya zadacha dlya mnogomernogo giperbolicheskogo uravneniya v sluchae integralnogo pereopredeleniya”, Matematicheskie zametki SVFU, 20:2 (2013), 79–97 | Zbl

[14] Kuliev M. A., “Mnogomernaya obratnaya kraevaya zadacha dlya lineinogo giperbolicheskogo uravneniya v ogranichennoi oblasti”, Differents. uravneniya, 38:1 (2002), 98–101 | MR | Zbl

[15] D. Orlovsky, S. Piskarev, R. Spigler, “On approximation of inverse problems for abstract hyperbolic equations”, Taiwanese J. of Mathematics, 14:33 (2010), 1145–1167 | MR | Zbl

[16] Valitov I. R., Kozhanov A. I., “Obratnye zadachi dlya giperbolicheskikh uravnenii: sluchai neizvestnykh koeffitsientov, zavisyaschikh ot vremeni”, Vestnik NGU. Seriya Matematika, mekhanika, informatika, 6:1 (2006), 3–18

[17] Safiullova R. R., “O razreshimosti lineinoi obratnoi zadachi nakhozhdeniya pravoi chasti sostavnogo vida v giperbolicheskom uravnenii”, Vestnik YurGU. Seriya Matematicheskoe modelirovanie i programmirovanie, 37(170):4 (2009), 93–105

[18] A. I. Kozhanov, R. R. Safiullova, “Linear inverse problems for parabolic and hyperbolic equations”, J. of Inverse and Ill-Posed Problems, 18:1 (2010), 1–18 | DOI | MR | Zbl

[19] Pavlov C. S., “Obratnaya zadacha vosstanovleniya vneshnego vozdeistviya v mnogomernom volnovom uravnenii s integralnym pereopredeleniem”, Matematicheskie zametki YaGU, 18:1 (2011), 81–93 | MR | Zbl

[20] V. I. Priimenko, M. P. Vishnevskii, “An identification problem related to the Biot system”, J. of Inverse and Ill-Posed Problem, 23:3 (2015), 219–230 | MR | Zbl

[21] C. Cavaterra, A. Lorenzi, M. Yamamoto, “A stability result via Carleman estimates for an inverse source problem related to a hyperbolic integro-differential equation”, Comput. Appl. Math., 25 (2006), 229–250 | MR | Zbl

[22] A. Lorenzi, E. Paparoni, “Identifications of two unknown coefficients in an integro-differential hyperbolic equation”, J. Inv. Ill-Posed Problems, 1:4 (1993), 331–348 | DOI | MR | Zbl

[23] L. Seliga, M. Slodicka, “An inverse source problem for a damped wave equation with memory”, J. Inv. Ill-Posed Problems, 24:2 (2015), 111–122 | MR

[24] A. Lorenzi, G. Mola, “Identification of a real constant in linear evolution equation in a Hilbert spaces”, Inverse Problems Imaging, 5:3 (2011), 695–714 | DOI | MR | Zbl

[25] G. Mola, “Identification of the Diffusion Coefficient in Linear Evolution Equations in Hilbert Spaces”, J. Abstr. Diff. Equat. Appl., 2 (2011), 18–28 | MR

[26] A. Lorenzi, G. Mola, “Recovering the reaction and the diffusion coefficients in a linear parabolic equation”, Inverse Problems, 28:7 (2012), 075006, 23 pp. | DOI | MR | Zbl

[27] Dzhenaliev M. T., K teorii lineinykh kraevykh zadach dlya nagruzhennykh differentsialnykh uravnenii, Institut teoreticheskoi i prikladnoi matematiki, Almaty, 1995

[28] Nakhushev A. M., Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012

[29] Kozhanov A. I., K teorii uravnenii sostavnogo tipa, Avtoreferat diss. $\dots$ d. f-m. n., Novosibirsk, 1993

[30] A. I. Kozhanov, Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[31] Sobolev C. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[32] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[33] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR

[34] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, Prikladnaya matematika i mekhanika, 24:5 (1960), 58–75