On coercive properties and separability of biharmonic operator with matrix potential
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 54-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we consider the coercive properties of a nonlinear biharmonic operator with a matrix operator in the space $L_2(\mathbb R^n)^l$ and we prove its separability in this space. The considered nonlinear operators are not small perturbation of linear operators. The case of the linear biharmonic operator is considered separately.
Keywords: biharmonic differential operator, matrix potential, coercive inequalities, nonlinearity, separability.
@article{UFA_2017_9_1_a4,
     author = {O. Kh. Karimov},
     title = {On coercive properties and separability of biharmonic operator with matrix potential},
     journal = {Ufa mathematical journal},
     pages = {54--61},
     year = {2017},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a4/}
}
TY  - JOUR
AU  - O. Kh. Karimov
TI  - On coercive properties and separability of biharmonic operator with matrix potential
JO  - Ufa mathematical journal
PY  - 2017
SP  - 54
EP  - 61
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a4/
LA  - en
ID  - UFA_2017_9_1_a4
ER  - 
%0 Journal Article
%A O. Kh. Karimov
%T On coercive properties and separability of biharmonic operator with matrix potential
%J Ufa mathematical journal
%D 2017
%P 54-61
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a4/
%G en
%F UFA_2017_9_1_a4
O. Kh. Karimov. On coercive properties and separability of biharmonic operator with matrix potential. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 54-61. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a4/

[1] W. N. Everitt, M. Gierz, “Some properties of the domains of certain differential operators”, Proc. London Math. Soc., 1971:23, 301–324 | MR | Zbl

[2] W. N. Everitt, M. Gierz, “On some properties of the powers of a family self-adjoint differential expressions”, Proc. London Math. Soc., 1972, 149–170 | MR | Zbl

[3] W. N. Everitt, M. Gierz, “Some inequallities associated with certain differential operarors”, Math. Z., 126 (1972), 308–326 | DOI | MR | Zbl

[4] W. N. Everitt, M. Gierz, “Inequalities and separation for Schrodinger -tupe operators in $L_2(R^n)$”, Proc. Roy. Soc. Edinburg. Sect. A, 79 (1977), 149–170 | MR

[5] Boimatov K. Kh., “Teoremy razdelimosti, vesovye prostranstva i ikh prilozheniya”, Trudy Matematicheskogo instituta im. V. A. Steklova AN SSSR, 170, 1984, 37–76 | MR | Zbl

[6] Boimatov K. Kh., Sharipov A., “Koertsitivnye svoistva nelineinykh operatorov Shredingera i Diraka”, Doklady Akademii nauk Rossii, 326:3 (1992), 393–398

[7] Otelbaev M., “Koertsitivnye otsenki i teoremy razdelimosti dlya ellipticheskikh uravnenii v $R^n$”, Trudy Matematicheskogo instituta im. V. A. Steklova AN SSSR, 161, 1983, 195–217 | MR | Zbl

[8] Muratbekov M. B., Otelbaev M., “Gladkost i approksimativnye svoistva reshenii odnogo klassa nelineinykh uravnenii tipa Shredingera”, Izv. vuzov. Matem., 1989, no. 3, 44–48 | MR | Zbl

[9] E. M. E. Zayed, “Separation for the biharmonic differential operator in the Hilbert space associated with existence and uniqueness theorem”, J. Math. Anal. Appl., 337 (2008), 659–666 | DOI | MR | Zbl

[10] Karimov O. Kh., “Koertsitivnye svoistva i razdelimost bigarmonicheskogo operatora s matrichnym potentsialom”, Materialy Mezhdunarodnoi konferentsii po funktsionalnym prostranstvam i teorii priblizheniya funktsii, posvyaschennaya 110-letiyu so dnya rozhdeniya akademika S. M. Nikolskogo (25–29 maya 2015 g., MIAN, g. Moskva), 153–154

[11] Karimov O. Kh., “O razdelimosti nelineinykh differentsialnykh operatorov vtorogo poryadka s matrichnymi koeffitsientami”, Izvestiya AN RT. Otdelenie fiziko-matematicheskikh, khimicheskikh, geologicheskikh i tekhnicheskikh nauk, 2014, no. 3(157), 42–50