Modelling compression waves with a large initial gradient in the Korteweg–de Vries hydrodynamics
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 41-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Cauchy problem for the Korteweg–de Vries equation with a small parameter at the higher derivative and a large gradient of the initial function. By means of the numerical and analytic methods we show that the formal asymptotics obtained by renormalization is an asymptotic solution to the KdV equation. We obtain the graphs of the asymptotic solutions including the case of non-monotone initial data.
Keywords: Korteweg–de Vries equation, Cauchy problem
Mots-clés : compression wave.
@article{UFA_2017_9_1_a3,
     author = {S. V. Zakharov and A. E. Elbert},
     title = {Modelling compression waves with a~large initial gradient in the {Korteweg{\textendash}de~Vries} hydrodynamics},
     journal = {Ufa mathematical journal},
     pages = {41--53},
     year = {2017},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a3/}
}
TY  - JOUR
AU  - S. V. Zakharov
AU  - A. E. Elbert
TI  - Modelling compression waves with a large initial gradient in the Korteweg–de Vries hydrodynamics
JO  - Ufa mathematical journal
PY  - 2017
SP  - 41
EP  - 53
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a3/
LA  - en
ID  - UFA_2017_9_1_a3
ER  - 
%0 Journal Article
%A S. V. Zakharov
%A A. E. Elbert
%T Modelling compression waves with a large initial gradient in the Korteweg–de Vries hydrodynamics
%J Ufa mathematical journal
%D 2017
%P 41-53
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a3/
%G en
%F UFA_2017_9_1_a3
S. V. Zakharov; A. E. Elbert. Modelling compression waves with a large initial gradient in the Korteweg–de Vries hydrodynamics. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 41-53. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a3/

[1] Gurevich A. V., Pitaevskii L. P., “Nestatsionarnaya struktura besstolknovitelnoi udarnoi volny”, ZhETF, 65:2 (1973), 590–604

[2] Gurevich A. V., Krylov A. L., El G. A., “Oprokidyvanie volny Rimana v dispersionnoi gidrodinamike”, Pisma v ZhETF, 54:2 (1991), 104–109

[3] Krylov A. L., Khodorovskii V. V., El G. A., “Evolyutsiya nemonotonnogo vozmuscheniya v gidrodinamike Kortevega–de Friza”, Pisma v ZhETF, 56:6 (1992), 325–329 | MR

[4] Mazur N. G., “Kvaziklassicheskaya asimptotika v metode obratnoi zadachi rasseyaniya dlya uravneniya KdF i reshenie modulyatsionnykh uravnenii Uizema”, Teor. i matem. fiz., 106:1 (1996), 44–61 | DOI | MR | Zbl

[5] Khruslov E. Ya., “Asimptotika resheniya zadachi Koshi dlya uravneniya Kortevega–de Friza s nachalnymi dannymi tipa stupenki”, Matem. sb., 99(141):2 (1976), 261–281 | MR | Zbl

[6] A. Cohen, “Solutions of the Korteweg–de Vries equation with steplike initial profile”, Comm. Partial Diff. Eq., 9:8 (1984), 751–806 | DOI | MR | Zbl

[7] S. Venakides, “Long time asymptotics of the Korteweg–de Vries equation”, Transactions of AMS, 293:1 (1986), 411–419 | DOI | MR | Zbl

[8] Suleimanov B. I., “O reshenii uravneniya Kortevega–de Vriza, voznikayuschego vblizi tochki oprokidyvaniya v zadachakh s maloi dispersiei”, Pisma v ZhETF, 58:11 (1993), 906–910 | MR

[9] T. Kappeler, “Solutions of the Korteweg–de Vries equation with steplike initial data”, J. Diff. Eq., 63:3 (1986), 306–331 | DOI | MR | Zbl

[10] Bondareva I. N., “Uravnenie Kortevega–de Friza v klassakh rastuschikh funktsii s zadannoi asimptotikoi pri $|x|\to\infty$”, Matem. sb., 122(164):2(10) (1983), 131–141 | MR | Zbl

[11] Zakharov S. V., “Renormalizatsiya v zadache Koshi dlya uravneniya Kortevega–de Friza”, Teor. i matem. fiz., 175:2 (2013), 173–177 | DOI | MR | Zbl

[12] Teodorovich E. V., “Metod renormalizatsionnoi gruppy v zadachakh mekhaniki”, Prikl. Matem. Mekh., 68:2 (2004), 335–367 | MR | Zbl

[13] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[14] Zakharov S. V., “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s dvumya malymi parametrami”, Dokl. Akad. Nauk, 422:6 (2008), 733–734 | MR | Zbl

[15] Zakharov S. V., “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s bolshim nachalnym gradientom i maloi vyazkostyu”, Zhurn. vychisl. matem. i matem. fiziki, 50:4 (2010), 699–706 | MR | Zbl