Modelling compression waves with a~large initial gradient in the Korteweg--de~Vries hydrodynamics
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 41-53
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Cauchy problem for the Korteweg–de Vries equation with a small parameter at the higher derivative and a large gradient of the initial function. By means of the numerical and analytic methods we show that the formal asymptotics obtained by renormalization is an asymptotic solution to the KdV equation. We obtain the graphs of the asymptotic solutions including the case of non-monotone initial data.
Keywords:
Korteweg–de Vries equation, Cauchy problem
Mots-clés : compression wave.
Mots-clés : compression wave.
@article{UFA_2017_9_1_a3,
author = {S. V. Zakharov and A. E. Elbert},
title = {Modelling compression waves with a~large initial gradient in the {Korteweg--de~Vries} hydrodynamics},
journal = {Ufa mathematical journal},
pages = {41--53},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a3/}
}
TY - JOUR AU - S. V. Zakharov AU - A. E. Elbert TI - Modelling compression waves with a~large initial gradient in the Korteweg--de~Vries hydrodynamics JO - Ufa mathematical journal PY - 2017 SP - 41 EP - 53 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a3/ LA - en ID - UFA_2017_9_1_a3 ER -
S. V. Zakharov; A. E. Elbert. Modelling compression waves with a~large initial gradient in the Korteweg--de~Vries hydrodynamics. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 41-53. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a3/