Growth regularity for the arguments of meromorphic in $\mathbb C\setminus\{0\}$ functions of completely regular growth
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 123-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the asymptotic behaviour for the arguments of meromorphic function in $\mathbb C\setminus\{0\}$ of completely regular growth with respect to a growth function $\lambda$. We find that that the key role in the description of this behaviour is played by the function $\lambda_1(r)=\int_1^r\lambda(t)/t\,dt$.
Keywords: meromorphic function, function of moderate growth, completely regular growth, growth indicator
Mots-clés : Fourier coefficients.
@article{UFA_2017_9_1_a10,
     author = {A. Ya. Khrystiyanyn and O. S. Vyshyns'kyi},
     title = {Growth regularity for the arguments of meromorphic in $\mathbb C\setminus\{0\}$ functions of completely regular growth},
     journal = {Ufa mathematical journal},
     pages = {123--136},
     year = {2017},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a10/}
}
TY  - JOUR
AU  - A. Ya. Khrystiyanyn
AU  - O. S. Vyshyns'kyi
TI  - Growth regularity for the arguments of meromorphic in $\mathbb C\setminus\{0\}$ functions of completely regular growth
JO  - Ufa mathematical journal
PY  - 2017
SP  - 123
EP  - 136
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a10/
LA  - en
ID  - UFA_2017_9_1_a10
ER  - 
%0 Journal Article
%A A. Ya. Khrystiyanyn
%A O. S. Vyshyns'kyi
%T Growth regularity for the arguments of meromorphic in $\mathbb C\setminus\{0\}$ functions of completely regular growth
%J Ufa mathematical journal
%D 2017
%P 123-136
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a10/
%G en
%F UFA_2017_9_1_a10
A. Ya. Khrystiyanyn; O. S. Vyshyns'kyi. Growth regularity for the arguments of meromorphic in $\mathbb C\setminus\{0\}$ functions of completely regular growth. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 123-136. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a10/

[1] B. Ya. Levin, Distribution of zeros of entire functions, Revised edition, Amer. Math. Soc., Providence, RI, 1980 | MR

[2] L. A. Rubel, B. A. Taylor, “A Fourier series method for meromorphic and entire functions”, Bull. Amer. Math. Soc., 72:5 (1966), 858–860 | DOI | MR | Zbl

[3] Math. USSR-Sbornik, 35:1 (1979), 63–84 | DOI | MR | Zbl | Zbl

[4] Math. USSR-Sbornik, 41:1 (1982), 101–113 | DOI | MR | Zbl

[5] Math. USSR-Sbornik, 48:2 (1984), 327–338 | DOI | MR | Zbl | Zbl

[6] A. A. Kondratyuk, Fourier series and meromorphic functions, Izd. “Vishcha Shkola”, L'vov, 1988 (in Russian) | MR | Zbl

[7] A. Ya. Khrystiyanyn, A. A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli. I”, Mat. Stud., 23:1 (2005), 19–30 | MR | Zbl

[8] A. Ya. Khrystiyanyn, A. A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli. II”, Mat. Stud., 24:2 (2005), 57–68 | MR | Zbl

[9] A. Kondratyuk, I. Laine, “Meromorphic functions in multiply connected domains”, Fourier series method in complex analysis, Proc. workshop (Merkrijärvi, 2005), v. 10, Univ. Joensuu Dept. Math. Rep. Ser., Univ. Joensuu, 2006, 9–111 | MR | Zbl

[10] M. Goldak, A. Khrystiyanyn, “Holomorphic functions of completely regular growth in the punctured plane”, Visnyk Lviv. Univ. Ser. Mekh. Mat., 75 (2011), 91–96 (in Ukrainian) | Zbl

[11] O. Vyshyns'kyi, A. Khrystiyanyn, “On the simultaneous regular growth of the logarithm of modulus and argument of a holomorphic in the punctured plane function”, Visnyk Lviv. Univ. Ser. Mekh. Mat., 79 (2014), 33–47 (in Ukrainian)

[12] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964 | MR | Zbl

[13] I. P. Natanson, Theory of functions of a real variable, Ungar Publishing Company, New York, 1964 | MR

[14] A. Zygmund, Trigonometric series, v. I, II, Cambridge Univ. Press, Cambridge, 1959 | MR | Zbl

[15] M. Goldak, A. Khrystiyanyn, “Inverse formulas for the Fourier coefficients of meromorphic functions on annuli”, Visnyk Lviv. Univ. Ser. Mech. Math., 71 (2009), 71–77 (in Ukrainian) | Zbl

[16] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, Dover Puplications Inc., Mineola, New York, 1999 | MR