Mots-clés : Fourier coefficients.
@article{UFA_2017_9_1_a10,
author = {A. Ya. Khrystiyanyn and O. S. Vyshyns'kyi},
title = {Growth regularity for the arguments of meromorphic in $\mathbb C\setminus\{0\}$ functions of completely regular growth},
journal = {Ufa mathematical journal},
pages = {123--136},
year = {2017},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a10/}
}
TY - JOUR
AU - A. Ya. Khrystiyanyn
AU - O. S. Vyshyns'kyi
TI - Growth regularity for the arguments of meromorphic in $\mathbb C\setminus\{0\}$ functions of completely regular growth
JO - Ufa mathematical journal
PY - 2017
SP - 123
EP - 136
VL - 9
IS - 1
UR - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a10/
LA - en
ID - UFA_2017_9_1_a10
ER -
%0 Journal Article
%A A. Ya. Khrystiyanyn
%A O. S. Vyshyns'kyi
%T Growth regularity for the arguments of meromorphic in $\mathbb C\setminus\{0\}$ functions of completely regular growth
%J Ufa mathematical journal
%D 2017
%P 123-136
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a10/
%G en
%F UFA_2017_9_1_a10
A. Ya. Khrystiyanyn; O. S. Vyshyns'kyi. Growth regularity for the arguments of meromorphic in $\mathbb C\setminus\{0\}$ functions of completely regular growth. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 123-136. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a10/
[1] B. Ya. Levin, Distribution of zeros of entire functions, Revised edition, Amer. Math. Soc., Providence, RI, 1980 | MR
[2] L. A. Rubel, B. A. Taylor, “A Fourier series method for meromorphic and entire functions”, Bull. Amer. Math. Soc., 72:5 (1966), 858–860 | DOI | MR | Zbl
[3] Math. USSR-Sbornik, 35:1 (1979), 63–84 | DOI | MR | Zbl | Zbl
[4] Math. USSR-Sbornik, 41:1 (1982), 101–113 | DOI | MR | Zbl
[5] Math. USSR-Sbornik, 48:2 (1984), 327–338 | DOI | MR | Zbl | Zbl
[6] A. A. Kondratyuk, Fourier series and meromorphic functions, Izd. “Vishcha Shkola”, L'vov, 1988 (in Russian) | MR | Zbl
[7] A. Ya. Khrystiyanyn, A. A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli. I”, Mat. Stud., 23:1 (2005), 19–30 | MR | Zbl
[8] A. Ya. Khrystiyanyn, A. A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli. II”, Mat. Stud., 24:2 (2005), 57–68 | MR | Zbl
[9] A. Kondratyuk, I. Laine, “Meromorphic functions in multiply connected domains”, Fourier series method in complex analysis, Proc. workshop (Merkrijärvi, 2005), v. 10, Univ. Joensuu Dept. Math. Rep. Ser., Univ. Joensuu, 2006, 9–111 | MR | Zbl
[10] M. Goldak, A. Khrystiyanyn, “Holomorphic functions of completely regular growth in the punctured plane”, Visnyk Lviv. Univ. Ser. Mekh. Mat., 75 (2011), 91–96 (in Ukrainian) | Zbl
[11] O. Vyshyns'kyi, A. Khrystiyanyn, “On the simultaneous regular growth of the logarithm of modulus and argument of a holomorphic in the punctured plane function”, Visnyk Lviv. Univ. Ser. Mekh. Mat., 79 (2014), 33–47 (in Ukrainian)
[12] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964 | MR | Zbl
[13] I. P. Natanson, Theory of functions of a real variable, Ungar Publishing Company, New York, 1964 | MR
[14] A. Zygmund, Trigonometric series, v. I, II, Cambridge Univ. Press, Cambridge, 1959 | MR | Zbl
[15] M. Goldak, A. Khrystiyanyn, “Inverse formulas for the Fourier coefficients of meromorphic functions on annuli”, Visnyk Lviv. Univ. Ser. Mech. Math., 71 (2009), 71–77 (in Ukrainian) | Zbl
[16] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, Dover Puplications Inc., Mineola, New York, 1999 | MR