On deficiency index for some second order vector differential operators
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 18-28
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the operators generated by the second order matrix linear symmetric quasi-differential expression
$$
l[y]=-(P(y'-Ry))'-R^*P(y'-Ry)+Qy
$$
on the set $[1,+\infty)$, where $P^{-1}(x)$, $Q(x)$ are Hermitian matrix functions and $R(x)$ is a complex matrix function of order $n$ with entries $p_{ij}(x),q_{ij}(x),r_{ij}(x)\in L^1_{loc}[1,+\infty)$ ($i,j=1,2,\dots,n$). We describe the minimal closed symmetric operator $L_0$ generated by this expression in the Hilbert space $L^2_n[1,+\infty)$. For this operator we prove an analogue of the Orlov's theorem on the deficiency index of linear scalar differential operators.
Keywords:
quasi-derivative, quasi-differential expression, minimal closed symmetric differential operator, deficiency numbers, asymptotic of the fundamental system of solutions.
@article{UFA_2017_9_1_a1,
author = {I. N. Braeutigam and K. A. Mirzoev and T. A. Safonova},
title = {On deficiency index for some second order vector differential operators},
journal = {Ufa mathematical journal},
pages = {18--28},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a1/}
}
TY - JOUR AU - I. N. Braeutigam AU - K. A. Mirzoev AU - T. A. Safonova TI - On deficiency index for some second order vector differential operators JO - Ufa mathematical journal PY - 2017 SP - 18 EP - 28 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a1/ LA - en ID - UFA_2017_9_1_a1 ER -
I. N. Braeutigam; K. A. Mirzoev; T. A. Safonova. On deficiency index for some second order vector differential operators. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 18-28. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a1/