On deficiency index for some second order vector differential operators
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 18-28
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider the operators generated by the second order matrix linear symmetric quasi-differential expression $$ l[y]=-(P(y'-Ry))'-R^*P(y'-Ry)+Qy $$ on the set $[1,+\infty)$, where $P^{-1}(x)$, $Q(x)$ are Hermitian matrix functions and $R(x)$ is a complex matrix function of order $n$ with entries $p_{ij}(x),q_{ij}(x),r_{ij}(x)\in L^1_{loc}[1,+\infty)$ ($i,j=1,2,\dots,n$). We describe the minimal closed symmetric operator $L_0$ generated by this expression in the Hilbert space $L^2_n[1,+\infty)$. For this operator we prove an analogue of the Orlov's theorem on the deficiency index of linear scalar differential operators.
Keywords: quasi-derivative, quasi-differential expression, minimal closed symmetric differential operator, deficiency numbers, asymptotic of the fundamental system of solutions.
@article{UFA_2017_9_1_a1,
     author = {I. N. Braeutigam and K. A. Mirzoev and T. A. Safonova},
     title = {On deficiency index for some second order vector differential operators},
     journal = {Ufa mathematical journal},
     pages = {18--28},
     year = {2017},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a1/}
}
TY  - JOUR
AU  - I. N. Braeutigam
AU  - K. A. Mirzoev
AU  - T. A. Safonova
TI  - On deficiency index for some second order vector differential operators
JO  - Ufa mathematical journal
PY  - 2017
SP  - 18
EP  - 28
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a1/
LA  - en
ID  - UFA_2017_9_1_a1
ER  - 
%0 Journal Article
%A I. N. Braeutigam
%A K. A. Mirzoev
%A T. A. Safonova
%T On deficiency index for some second order vector differential operators
%J Ufa mathematical journal
%D 2017
%P 18-28
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a1/
%G en
%F UFA_2017_9_1_a1
I. N. Braeutigam; K. A. Mirzoev; T. A. Safonova. On deficiency index for some second order vector differential operators. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 18-28. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a1/

[1] Orlov S. A., “Ob indekse defekta lineinykh differentsialnykh operatorov”, DAN SSSR, 92:3 (1953), 483–486 | Zbl

[2] Neimark F. A., “Ob indekse defekta differentsialnogo operatora”, UMN, 17:4 (1962), 157–163 | MR | Zbl

[3] R. B. Paris, A. D. Wood, “On the $\mathcal L_2(I)$ nature of solutions of $n-$ th order symmetric differential operator and McLeod's conjecture”, Proc. Roy. Soc. Edinburgh A, 90 (1981), 209–236 | DOI | MR | Zbl

[4] R. M. Kauffman, “On the limit-$n$ classification of ordinary differential operators with positive coefficients”, Proc. London Math. Soc. (3), 35 (1977), 496–526 | DOI | MR | Zbl

[5] R. B. Paris, A. D. Wood, “On the $\mathcal L_2(I)$ nature of solutions of $n$-th order symmetric differential operator and McLeod's conjecture”, Asymptotics of high order differential equations, Pitman Res. Notes in Math. Ser., 129, 1986 | Zbl

[6] Mirzoev K. A., “O teoreme Orlova ob indekse defekta differentsialnykh operatorov”, DAN, 380:5 (2001), 591–595 | MR | Zbl

[7] Dolgikh I. N., Mirzoev K. A., “Indeksy defekta i spektr samosopryazhennykh rasshirenii nekotorykh klassov differentsialnykh operatorov”, Matematicheskii sbornik, 197:4 (2006), 53–74 | DOI | MR | Zbl

[8] Broitigam I. N., Mirzoev K. A., Safonova T. A., “Analog teoremy Orlova ob indekse defekta dlya matrichnykh differentsialnykh operatorov vtorogo poryadka”, Matematicheskie zametki, 97:2 (2015), 314–317 | DOI | MR | Zbl

[9] Mirzoev K. A., Safonova T. A., “Singulyarnye operatory Shturma–Liuvillya s negladkimi potentsialami v prostranstve vektor-funktsii”, Ufimskii matematicheskii zhurnal, 3:3 (2011), 105–119 | Zbl

[10] W. N. Everitt, L. Marcus, Boundary Value Problems and Sympletic Algebra for Ordinary Differential and Quasi-Differentrial Operators, Mathematical Surveys and Monographs, 61, AMS, 1999, 187 pp. | MR

[11] R. L. Anderson, “Limit-point and limit-circle criteria for a class of singular symmetric differential operators”, Canad. J. Math., 28:5 (1976), 905–914 | DOI | MR | Zbl

[12] Naimark M. A., Lineinye differentsialnye operatory, 2-e izd., pererab. i dop., Nauka, M., 1969, 526 pp. | MR

[13] A. Zettl, paper Sturm–Liouville theory, Mathematical Surveys and Monographs, 121, AMS, 2005, 330 pp. | MR

[14] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matematicheskie zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[15] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Trudy MMO, 64, 2003, 159–212 | Zbl

[16] S. Faedo, “Proprieta asintotiche delle soluzioni dei sistemi differenziali lineari”, Annali di Matematica Pura ed Applicata (4), 26 (1947), 207–215 | DOI | MR | Zbl

[17] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izdatelstvo LKI, M., 2007, 472 pp.