Conformal mappings of circular domains on finitely-connected non-Smirnov type domains
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 3-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a canonical factorization and integral representation for the derivatives of the conformal mappings of circular domains on finitely-connected non-Smirnov type domains. By means of the functions in the Zygmund class, we obtain the conditions for the global univalence. Earlier similar results were obtained by a series of authors just for simply-connected domains.
Keywords: non-Smirnov type domain, Zygmun condition, Schwarz operator.
@article{UFA_2017_9_1_a0,
     author = {F. G. Avkhadiev and P. L. Shabalin},
     title = {Conformal mappings of circular domains on finitely-connected {non-Smirnov} type domains},
     journal = {Ufa mathematical journal},
     pages = {3--17},
     year = {2017},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a0/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
AU  - P. L. Shabalin
TI  - Conformal mappings of circular domains on finitely-connected non-Smirnov type domains
JO  - Ufa mathematical journal
PY  - 2017
SP  - 3
EP  - 17
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a0/
LA  - en
ID  - UFA_2017_9_1_a0
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%A P. L. Shabalin
%T Conformal mappings of circular domains on finitely-connected non-Smirnov type domains
%J Ufa mathematical journal
%D 2017
%P 3-17
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a0/
%G en
%F UFA_2017_9_1_a0
F. G. Avkhadiev; P. L. Shabalin. Conformal mappings of circular domains on finitely-connected non-Smirnov type domains. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a0/

[1] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, izd. 2, Gostekhizdat, M.–L., 1950, 336 pp. | MR

[2] Smirnov V. I., “Sur la théorie des polynômes orthogonaux à la variable complex”, Zhurnal Leningr. fiz.-matem. ob-va, 2 (1928), 155–179

[3] M. V. Keldys̆, M. A. Lavrentiev, “Sur la repréntation conforme des domaines limités par des courbes rectifiables”, Ann. Ecole Norm. (3), 1937, 1–38 | MR | Zbl

[4] P. L. Duren, M. S. Shapiro, A. L. Shields, “Singular measures and domains not of Smirnov type”, Duke Math. J., 33:2 (1966), 247–254 | DOI | MR | Zbl

[5] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965, 615 pp. | MR

[6] L. V. Ahlfors, G. Weill, “A uniqueness theorem for Beltrami equations”, Proc. Amer. Math. Soc., 1962, 247–254 | MR

[7] Shabalin P. L., “Ob odnolistnosti obschego resheniya vnutrennei obratnoi kraevoi zadachi”, Izv. vuzov. Matematika, 1975, no. 12, 92–95 | MR | Zbl

[8] Avkhadiev F. G., “Otsenki v klasse Zigmunda i ikh primenenie k kraevym zadacham”, Dokl. AN SSSR, 307:6 (1989), 1289–1292 | MR

[9] Makarov N. G., “O razmere mnozhestva osobykh tochek na granitse nesmirnovskoi oblasti”, Zap. nauchn. sem. LOMI, 170, 1989, 176–183 | MR | Zbl

[10] P. W. Jones, S. K. Smirnov, V. I. On, “Smirnov domains”, Ann. Acad. Sci. Fennicae Mathem., 24 (1999), 105–108 | MR | Zbl

[11] C. Bishop, L. Carleson, J. Garnett, “Jones P. Harmonic measures supported on curves”, Pacific J. Math., 138 (1989), 233–236 | MR | Zbl

[12] S. Rohde, “On conformal welding and quasicircles”, Michigan Math. J., 38 (1991), 111–116 | MR | Zbl

[13] Dubinin V. N., “Neravenstva dlya garmonicheskikh mer otnositelno nenalegayuschikh oblastei”, Izv AN SSSR, ser. matem., 79:5 (2015), 47–64 | DOI | MR | Zbl

[14] Tumarkin G. Ts., Khavinson S. Ya., “Analiticheskie funktsii v mnogosvyaznykh oblastyakh klassa V. I. Smirnova (klassa $S$)”, Izv AN SSSR, ser. matem., 22:3 (1958), 379–386 | MR | Zbl

[15] Tumarkin G. Ts., Khavinson S. Ya., “O suschestvovanii v mnogosvyaznykh oblastyakh odnoznachnykh analiticheskikh funktsii s zadannym modulem granichnykh znachenii”, Izv AN SSSR, ser. matem., 22:4 (1958), 543–562 | MR | Zbl

[16] Tumarkin G. Ts., “Usloviya suschestvovaniya analiticheskoi mazhoranty semeistva analiticheskikh funktsii”, Izv AN Arm.SSR, ser. matem., 17:6 (1964), 3–25 | Zbl

[17] D. Khavinson, “Factorization theorems for different classes of analytic functions in multiply connected domains”, Pacific J. Math., 108:2 (1983), 295–318 | DOI | MR | Zbl

[18] Avkhadiev F. G., “Dostatochnye usloviya odnolistnosti kvazikonformnykh otobrazhenii”, Matem. zametki, 18:6 (1975), 793–802 | MR | Zbl

[19] B. G. Osgood, “Some properties of $f''/f'$ and the Poincaré metric”, Indiana Univ. Math. J., 31:4 (1982), 449–461 | DOI | MR | Zbl

[20] J. Becker, Ch. Pommerenke, “Schlichtheitskriterien und Jordangebiete”, J. Reine Angew. Math., 354 (1984), 74–94 | MR | Zbl

[21] Avkhadiev F. G., “Ob in'ektivnosti v oblasti otkrytykh izolirovannykh otobrazhenii s zadannymi granichnymi svoistvami”, Dokl. AN SSSR, 292:4 (1987), 780–783 | MR | Zbl

[22] Avkhadiev F. G., “Dopustimye funktsionaly v usloviyakh odnolistnosti dlya differentsiruemykh otobrazhenii $n$-mernykh oblastei”, Izv. vuzov. Matem., 1989, no. 4, 3–12 | MR | Zbl

[23] F. G. Avkhadiev, K. J. Wirths, Schwarz–Pick type inequalities, Birkhäuser Verlag, Basel–Boston–Berlin, 2009, 156 pp. | MR | Zbl

[24] Goluzin G. M., “O parametricheskom predstavlenii funktsii, odnolistnykh v koltse”, Mat. sb., 29(71):2 (1951), 469–476 | MR | Zbl