Perturbation of a surjective convolution operator
Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 123-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mu\in\mathcal E'(\mathbb R^n)$ be a compactly supported distribution such that its support is a convex set with a non-empty interior. Let $X_2$ be a convex domain in $\mathbb R^n$, $X_1=X_2+\mathrm{supp}\,\mu $. Let the convolution operator $A\colon\mathcal E(X_1)\to\mathcal E(X_2)$ acting by the rule $(Af)(x)=(\mu*f)(x)$ is surjective. We obtain a sufficient condition for a linear continuous operator $B\colon\mathcal E(X_1)\to\mathcal E(X_2)$ ensuring the surjectivity of the operator $A+B$.
Keywords: convolution operator, entire functions.
Mots-clés : distribution, Fourier–Laplace transform
@article{UFA_2016_8_4_a8,
     author = {I. Kh. Musin},
     title = {Perturbation of a~surjective convolution operator},
     journal = {Ufa mathematical journal},
     pages = {123--130},
     year = {2016},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a8/}
}
TY  - JOUR
AU  - I. Kh. Musin
TI  - Perturbation of a surjective convolution operator
JO  - Ufa mathematical journal
PY  - 2016
SP  - 123
EP  - 130
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a8/
LA  - en
ID  - UFA_2016_8_4_a8
ER  - 
%0 Journal Article
%A I. Kh. Musin
%T Perturbation of a surjective convolution operator
%J Ufa mathematical journal
%D 2016
%P 123-130
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a8/
%G en
%F UFA_2016_8_4_a8
I. Kh. Musin. Perturbation of a surjective convolution operator. Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 123-130. http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a8/

[1] L. Ehrenpreis, “Solution of some problems of division. Part I. Division by a polynomial of derivation”, Amer. J. Math., 76 (1954), 883–903 | DOI | MR | Zbl

[2] B. Malgrange, “Existence et approximation des solutions des equation aux derivees partielles et des equations de convolution”, Ann. Inst. Fourier (Grenoble), 6 (1955–56), 271–355 | DOI | MR

[3] L. Ehrenpreis, “Solutions of some problems of division. Part IV. Invertible and elliptic operators”, Amer. J. Math., 82 (1960), 522–588 | DOI | MR | Zbl

[4] L. Hörmander, On the range of differential and convolution operators, Institute for Advanced Study, Princeton, New Jersey, 1961

[5] L. Hörmander, “On the range of convolution operators”, Ann. of Math., 76 (1962), 148–170 | DOI | MR | Zbl

[6] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, 2, Differentsialnye operatory s postoyannymi koeffitsientami, Mir, M., 1986 | MR

[7] L. Hörmander, “Supports and singular supports of convolutions”, Acta Math., 110 (1963), 279–302 | DOI | MR | Zbl

[8] W. Abramczuk, “A class of surjective convolution operators”, Pacific J. Math., 110 (1984), 1–7 | DOI | MR

[9] C. Fernandez, A. Galbis, D. Jornet, “Perturbations of surjective convolution operators”, Proc. Amer. Math. Soc., 130 (2002), 2377–2381 | DOI | MR | Zbl

[10] R. Braun, R. Meise, B. A. Taylor, “Ultradifferentiable functions and Fourier analysis”, Results Math., 17 (1990), 206–237 | DOI | MR | Zbl

[11] J. Bonet, A. Galbis, R. Meise, “On the range of convolution operators on non-quasianalytic ultradifferentiable functions”, Studia Math., 126 (1997), 171–198 | MR | Zbl

[12] R. Braun, R. Meise, D. Vogt, “Existence of fundamental solutions and surjectivity of convolution operators on classes of ultradifferentiable functions”, Proc. London Math. Soc., 61 (1990), 344–370 | DOI | MR | Zbl

[13] Merzlyakov S. G., “O vozmuschenii operatorov svertki v prostranstvakh golomorfnykh funktsii”, Matem. sb., 186:3 (1995), 103–130 | MR | Zbl

[14] L. Hörmander, “Convolution Equations in Convex Domains”, Inventiones Math., 4 (1968), 306–317 | DOI | MR | Zbl

[15] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Sb. per. Matematika, 1:1 (1957), 60–77

[16] I. Kh. Musin, “On the Fourier-Laplace representation of analytic functions in tube domains”, Collect. Math., 45 (1994), 301–308 | MR | Zbl

[17] Edvards R., Funktsionalnyi analiz, Mir, M., 1972