Perturbation of a~surjective convolution operator
Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 123-130
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mu\in\mathcal E'(\mathbb R^n)$ be a compactly supported distribution such that its support is a convex set with a non-empty interior. Let $X_2$ be a convex domain in $\mathbb R^n$, $X_1=X_2+\mathrm{supp}\,\mu $. Let the convolution operator $A\colon\mathcal E(X_1)\to\mathcal E(X_2)$ acting by the rule $(Af)(x)=(\mu*f)(x)$ is surjective. We obtain a sufficient condition for a linear continuous operator $B\colon\mathcal E(X_1)\to\mathcal E(X_2)$ ensuring the surjectivity of the operator $A+B$.
Keywords:
convolution operator, entire functions.
Mots-clés : distribution, Fourier–Laplace transform
Mots-clés : distribution, Fourier–Laplace transform
@article{UFA_2016_8_4_a8,
author = {I. Kh. Musin},
title = {Perturbation of a~surjective convolution operator},
journal = {Ufa mathematical journal},
pages = {123--130},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a8/}
}
I. Kh. Musin. Perturbation of a~surjective convolution operator. Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 123-130. http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a8/