Perturbation of a~surjective convolution operator
Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 123-130

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu\in\mathcal E'(\mathbb R^n)$ be a compactly supported distribution such that its support is a convex set with a non-empty interior. Let $X_2$ be a convex domain in $\mathbb R^n$, $X_1=X_2+\mathrm{supp}\,\mu $. Let the convolution operator $A\colon\mathcal E(X_1)\to\mathcal E(X_2)$ acting by the rule $(Af)(x)=(\mu*f)(x)$ is surjective. We obtain a sufficient condition for a linear continuous operator $B\colon\mathcal E(X_1)\to\mathcal E(X_2)$ ensuring the surjectivity of the operator $A+B$.
Keywords: convolution operator, entire functions.
Mots-clés : distribution, Fourier–Laplace transform
@article{UFA_2016_8_4_a8,
     author = {I. Kh. Musin},
     title = {Perturbation of a~surjective convolution operator},
     journal = {Ufa mathematical journal},
     pages = {123--130},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a8/}
}
TY  - JOUR
AU  - I. Kh. Musin
TI  - Perturbation of a~surjective convolution operator
JO  - Ufa mathematical journal
PY  - 2016
SP  - 123
EP  - 130
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a8/
LA  - en
ID  - UFA_2016_8_4_a8
ER  - 
%0 Journal Article
%A I. Kh. Musin
%T Perturbation of a~surjective convolution operator
%J Ufa mathematical journal
%D 2016
%P 123-130
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a8/
%G en
%F UFA_2016_8_4_a8
I. Kh. Musin. Perturbation of a~surjective convolution operator. Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 123-130. http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a8/