@article{UFA_2016_8_4_a6,
author = {M. Kosti\'c and V. E. Fedorov},
title = {Degenerate fractional differential equations in locally convex spaces with a~$\sigma$-regular pair of operators},
journal = {Ufa mathematical journal},
pages = {98--110},
year = {2016},
volume = {8},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a6/}
}
TY - JOUR AU - M. Kostić AU - V. E. Fedorov TI - Degenerate fractional differential equations in locally convex spaces with a $\sigma$-regular pair of operators JO - Ufa mathematical journal PY - 2016 SP - 98 EP - 110 VL - 8 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a6/ LA - en ID - UFA_2016_8_4_a6 ER -
M. Kostić; V. E. Fedorov. Degenerate fractional differential equations in locally convex spaces with a $\sigma$-regular pair of operators. Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 98-110. http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a6/
[1] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, PhD thesis, Eindhoven University of Technology, University Press Facilities, Eindhoven, 2001, iv+107+2 pp. | MR | Zbl
[2] K. Balachandran, S. Kiruthika, “Existence of solutions of abstract fractional integrodifferential equations of Sobolev type”, Computers and Mathematics with Applications, 64 (2012), 3406–3413 | DOI | MR | Zbl
[3] F. Li, J. Liang, H.-K. Xu, “Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions”, Journal of Mathematical Analysis and Applications, 391 (2012), 510–525 | DOI | Zbl
[4] Fedorov V. E., Debush A., “Odin klass vyrozhdennykh drobnykh evolyutsionnykh sistem v banakhovykh prostranstvakh”, Differents. uravneniya, 49:12 (2013), 1616–1622 | Zbl
[5] M. Kostić, “Abstract Volterra equations in locally convex spaces”, Sci. China Math., 55 (2012), 1797–1825 | DOI | MR | Zbl
[6] M. Kostić, C.-G. Li, M. Li, “On a class of abstract time-fractional equations on locally convex spaces”, Abstr. Appl. Anal., 2012 (2012), Article ID 131652, 41 pp. | DOI | MR | Zbl
[7] M. Kostić, “Abstract time-fractional equations: existence and growth of solutions”, Fract. Calculus Appl. Anal., 14 (2014), 301–316 | MR
[8] M. Kostić, “On the existence and uniqueness of solutions of certain classes of abstract multi-term fractional differential equations”, Funct. Anal. Appr. Comp., 6 (2014), 13–33 | MR | Zbl
[9] M. Kostić, C.-G. Li, M. Li, “Abstract multi-term fractional differential equations”, Krag. J. Math., 38 (2014), 51–71 | DOI | MR
[10] M. Kostić, “Hypercyclic and topologically mixing properties of degenerate multi-term fractional differential equations”, Diff. Eqns. Dyn. Sys., 24:4 (2016), 475–498 | DOI | MR | Zbl
[11] Fedorov V. E., Gordievskikh D. M., “Razreshayuschie operatory vyrozhdennykh evolyutsionnykh uravnenii s drobnoi proizvodnoi po vremeni”, Izv. vuzov. Matematika, 2015, no. 1, 71–83 | Zbl
[12] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, vii+216 pp. | MR | Zbl
[13] Fedorov V. E., “Silno golomorfnye gruppy lineinykh uravnenii sobolevskogo tipa v lokalno vypuklykh prostranstvakh”, Differents. uravneniya, 40:5 (2004), 702–712 | MR | Zbl
[14] Radyno Ya. V., Lineinye uravneniya i bornologiya, Izd-vo BGU, Mn., 1982, 200 pp.
[15] Volevich L. R., Gindikin S. G., Obobschennye funktsii i uravneniya v svertkakh, Fizmatlit, M., 1994, 336 pp.