Degenerate fractional differential equations in locally convex spaces with a $\sigma$-regular pair of operators
Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 98-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a degenerate fractional order differential equation $D^\alpha_tLu(t)=Mu(t)$ in a Hausdorff secquentially complete locally convex space is considered. Under the $p$-regularity of the operator pair $(L,M)$, we find the phase space of the equation and the family of its resolving operators. We show that the identity image of the latter coincides with the phase space. We prove an unique solvability theorem and obtain the form of the solution to the Cauchy problem for the corresponding inhomogeneous equation. We give an example of application the obtained abstract results to studying the solvability of the initial boundary value problems for the partial differential equations involving entire functions on an unbounded operator in a Banach space, which is a specially constructed Frechét space. It allows us to consider, for instance, a periodic in a spatial variable $x$ problem for the equation with a shift along $x$ and with a fractional order derivative with respect to time $t$.
Keywords: fractional differential equation, degenerate evolution equation, locally convex space, $\sigma$-regular pair of operators, phase space, solution operator.
@article{UFA_2016_8_4_a6,
     author = {M. Kosti\'c and V. E. Fedorov},
     title = {Degenerate fractional differential equations in locally convex spaces with a~$\sigma$-regular pair of operators},
     journal = {Ufa mathematical journal},
     pages = {98--110},
     year = {2016},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a6/}
}
TY  - JOUR
AU  - M. Kostić
AU  - V. E. Fedorov
TI  - Degenerate fractional differential equations in locally convex spaces with a $\sigma$-regular pair of operators
JO  - Ufa mathematical journal
PY  - 2016
SP  - 98
EP  - 110
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a6/
LA  - en
ID  - UFA_2016_8_4_a6
ER  - 
%0 Journal Article
%A M. Kostić
%A V. E. Fedorov
%T Degenerate fractional differential equations in locally convex spaces with a $\sigma$-regular pair of operators
%J Ufa mathematical journal
%D 2016
%P 98-110
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a6/
%G en
%F UFA_2016_8_4_a6
M. Kostić; V. E. Fedorov. Degenerate fractional differential equations in locally convex spaces with a $\sigma$-regular pair of operators. Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 98-110. http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a6/

[1] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, PhD thesis, Eindhoven University of Technology, University Press Facilities, Eindhoven, 2001, iv+107+2 pp. | MR | Zbl

[2] K. Balachandran, S. Kiruthika, “Existence of solutions of abstract fractional integrodifferential equations of Sobolev type”, Computers and Mathematics with Applications, 64 (2012), 3406–3413 | DOI | MR | Zbl

[3] F. Li, J. Liang, H.-K. Xu, “Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions”, Journal of Mathematical Analysis and Applications, 391 (2012), 510–525 | DOI | Zbl

[4] Fedorov V. E., Debush A., “Odin klass vyrozhdennykh drobnykh evolyutsionnykh sistem v banakhovykh prostranstvakh”, Differents. uravneniya, 49:12 (2013), 1616–1622 | Zbl

[5] M. Kostić, “Abstract Volterra equations in locally convex spaces”, Sci. China Math., 55 (2012), 1797–1825 | DOI | MR | Zbl

[6] M. Kostić, C.-G. Li, M. Li, “On a class of abstract time-fractional equations on locally convex spaces”, Abstr. Appl. Anal., 2012 (2012), Article ID 131652, 41 pp. | DOI | MR | Zbl

[7] M. Kostić, “Abstract time-fractional equations: existence and growth of solutions”, Fract. Calculus Appl. Anal., 14 (2014), 301–316 | MR

[8] M. Kostić, “On the existence and uniqueness of solutions of certain classes of abstract multi-term fractional differential equations”, Funct. Anal. Appr. Comp., 6 (2014), 13–33 | MR | Zbl

[9] M. Kostić, C.-G. Li, M. Li, “Abstract multi-term fractional differential equations”, Krag. J. Math., 38 (2014), 51–71 | DOI | MR

[10] M. Kostić, “Hypercyclic and topologically mixing properties of degenerate multi-term fractional differential equations”, Diff. Eqns. Dyn. Sys., 24:4 (2016), 475–498 | DOI | MR | Zbl

[11] Fedorov V. E., Gordievskikh D. M., “Razreshayuschie operatory vyrozhdennykh evolyutsionnykh uravnenii s drobnoi proizvodnoi po vremeni”, Izv. vuzov. Matematika, 2015, no. 1, 71–83 | Zbl

[12] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, vii+216 pp. | MR | Zbl

[13] Fedorov V. E., “Silno golomorfnye gruppy lineinykh uravnenii sobolevskogo tipa v lokalno vypuklykh prostranstvakh”, Differents. uravneniya, 40:5 (2004), 702–712 | MR | Zbl

[14] Radyno Ya. V., Lineinye uravneniya i bornologiya, Izd-vo BGU, Mn., 1982, 200 pp.

[15] Volevich L. R., Gindikin S. G., Obobschennye funktsii i uravneniya v svertkakh, Fizmatlit, M., 1994, 336 pp.