The problem of Steklov type in a half-cylinder with a small cavity
Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 62-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we consider a Steklov type problem for the Laplace operator in $n$-dimensional cylinder with a small cavity. On the lateral surfaces one of three classic boundary conditions is imposed, the boundary of the cavity is subject to the Dirichlet condition, while on the base of the cylinder we impose the spectral Steklov condition. We prove the convergence theorems for the eigenvalues of this problems as the small parameter, the diameter of the cavity, tends to zero. We construct and justify the complete asymptotic expansions in the small parameter converging both to a simple or a double eigenvalue of the limiting problem, which is the problem without the cavity.
Keywords: half-cylinder, Steklov problem, eigenvalue, small cavity, asymptotics.
Mots-clés : singular perturbation, convergence
@article{UFA_2016_8_4_a4,
     author = {D. B. Davletov and D. V. Kozhevnikov},
     title = {The problem of {Steklov} type in a~half-cylinder with a~small cavity},
     journal = {Ufa mathematical journal},
     pages = {62--87},
     year = {2016},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a4/}
}
TY  - JOUR
AU  - D. B. Davletov
AU  - D. V. Kozhevnikov
TI  - The problem of Steklov type in a half-cylinder with a small cavity
JO  - Ufa mathematical journal
PY  - 2016
SP  - 62
EP  - 87
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a4/
LA  - en
ID  - UFA_2016_8_4_a4
ER  - 
%0 Journal Article
%A D. B. Davletov
%A D. V. Kozhevnikov
%T The problem of Steklov type in a half-cylinder with a small cavity
%J Ufa mathematical journal
%D 2016
%P 62-87
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a4/
%G en
%F UFA_2016_8_4_a4
D. B. Davletov; D. V. Kozhevnikov. The problem of Steklov type in a half-cylinder with a small cavity. Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 62-87. http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a4/

[1] Samarskii A. A., “O vliyanii zakrepleniya na sobstvennye chastoty zamknutykh ob'emov”, DAN SSSR, 63:6 (1948), 631–634 | MR

[2] Dnestrovskii Yu. N., “Ob izmenenii sobstvennykh chisel pri izmenenii granitsy oblastei”, Vestnik Mosk. un-ta. Ser. I. Matematika, mekhanika, 1964, no. 9, 61–74 | MR

[3] Sh. Ozawa, “Singular Hadamard's variation of domains and eigenvalues of Laplacian”, Proc. Jap. Acad. A, 56 (1980), 351–357 | DOI | MR

[4] C. A. Swanson, “Asymptotic variontional formulae for eigenvalues”, Canad. Math. Bull., 6:1 (1963), 15–25 | DOI | MR | Zbl

[5] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. mat., 48:2 (1984), 347–371 | MR | Zbl

[6] Ilin A. M., “Issledovanie asimptotiki resheniya ellipticheskoi kraevoi zadachi v oblasti s malym otverstiem”, Trudy seminara im. I. G. Petrovskogo, 6, 1981, 57–82 | Zbl

[7] Kamotskii I. V., Nazarov S. A., “Spektralnye zadachi v singulyarno vozmuschennykh oblastyakh i samosopryazhennye rasshireniya differentsialnykh operatorov”, Tr. Sankt-peterburgsk. matem. ob-va, 6, 1998, 151–212 | MR

[8] Davletov D. B., “Singulyarno vozmuschennaya kraevaya zadacha Dirikhle dlya statsionarnoi sistemy lineinoi teorii uprugosti”, Izv. vuzov. Matem., 2008, no. 12, 7–16 | MR | Zbl

[9] Davletov D. B., “Asimptotika sobstvennykh znachenii kraevoi zadachi Dirikhle operatora Lame v trekhmernoi oblasti s maloi polostyu”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1847–1858 | MR | Zbl

[10] Davletov D. B., “Asimptotika sobstvennogo znacheniya dvumernoi kraevoi zadachi Dirikhle dlya operatora Lame v oblasti s malym otverstiem”, Matem. zametki, 93:4 (2013), 537–548 | DOI | MR | Zbl

[11] Nazarov S. A., “Asimptoticheskie razlozheniya sobstvennykh chisel zadachi Steklova v singulyarno vozmuschennykh oblastyakh”, Algebra i analiz, 26:2 (2014), 119–184 | MR

[12] Gadylshin R. R., Kozhevnikov D. V., “Ob usrednenii kravevoi zadachi v oblasti, perforirovannoi vdol chasti granitsy”, Problemy matematicheskogo analiza, 75, 2014, 41–59 | Zbl

[13] Chechkin G. A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Matem. sb., 184:6 (1993), 99–150 | MR | Zbl

[14] Chechkin G. A., Gadylshin R. R., “Kraevaya zadacha dlya laplasiana s bystro menyayuschimsya tipom granichnykh uslovii v mnogomernoi oblasti”, Sib. matem. zhurn., 40:2 (1999), 271–287 | MR | Zbl

[15] A. G. Belyaev, G. A. Chechkin, R. R. Gadyl'shin, “Effective membrane permeability: estimates and low concentration asymptotics SIAM”, Journal on Applied Mathematics, 60:1 (2000), 84–108 | MR

[16] Nazarov S. A., “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sib. matem. zhurn., 51:5 (2010), 1086–1101 | MR | Zbl

[17] Borisov D. I., “O PT-simmetrichnom volnovode s paroi malykh otverstii”, Trudy Instituta matematiki i mekhaniki UrO RAN, 18, no. 2, 2012, 22–37

[18] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[19] Gadylshin R. R., “Metod soglasovaniya asimptoticheskikh razlozhenii v singulyarno vozmuschennoi kraevoi zadachi dlya operatora Laplasa”, Sovremennaya matematika i ee prilozheniya, 5, 2003, 3–32 | Zbl

[20] Bikmetov A. R., Gadylshin R. R., “Vozmuschenie ellipticheskogo operatora uzkim potentsialom v $n$-mernoi oblasti”, Ufimskii matem. zhurnal, 4:2 (2012), 28–64 | MR

[21] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962 | MR

[22] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR

[23] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR