Modulo-loxodromic meromorphic functions in $\mathbb C\setminus\{0\}$
Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 152-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce modulo-loxodromic functions and study their representations, zeroes and poles distribution. We also show that each modulo-loxodromic meromorphic function in $\mathbb C\setminus\{0\}$ is Julia exceptional.
Keywords: loxodromic meromorphic function, modulo-loxodromic function, Julia exceptional function.
@article{UFA_2016_8_4_a11,
     author = {A. Ya. Khrystiyanyn and A. A. Kondratyuk},
     title = {Modulo-loxodromic meromorphic functions in~$\mathbb C\setminus\{0\}$},
     journal = {Ufa mathematical journal},
     pages = {152--158},
     year = {2016},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a11/}
}
TY  - JOUR
AU  - A. Ya. Khrystiyanyn
AU  - A. A. Kondratyuk
TI  - Modulo-loxodromic meromorphic functions in $\mathbb C\setminus\{0\}$
JO  - Ufa mathematical journal
PY  - 2016
SP  - 152
EP  - 158
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a11/
LA  - en
ID  - UFA_2016_8_4_a11
ER  - 
%0 Journal Article
%A A. Ya. Khrystiyanyn
%A A. A. Kondratyuk
%T Modulo-loxodromic meromorphic functions in $\mathbb C\setminus\{0\}$
%J Ufa mathematical journal
%D 2016
%P 152-158
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a11/
%G en
%F UFA_2016_8_4_a11
A. Ya. Khrystiyanyn; A. A. Kondratyuk. Modulo-loxodromic meromorphic functions in $\mathbb C\setminus\{0\}$. Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 152-158. http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a11/

[1] Julia G., Leçons sur les fonctions uniformes à point singulier essentiel isolé, Gauthier-Villars, Paris | Zbl

[2] Ostrowski A., “Über Folgen analytischer Funktionen und einige Verschärfungen des Picardschen Satzes”, Mathematische Zeitschrift, 24:1 (1926), 215–258 | DOI | MR

[3] Montel P., Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927 | MR | Zbl

[4] Rausenberger O., Lehrbuch der Theorie der Periodischen Functionen Einer Variabeln Mit Einer Endlichen Anzahl Wesentlicher Discontinuitätspunkte Nebst Einer Einleitung in die Allgemeine Functionentheorie, Druck und Verlag von B. G. Teubner, Leipzig, 1884

[5] Valiron G., Cours d'Analyse Mathématique, Théorie des fonctions, 2nd Edition, Masson et Cie., Paris, 1947

[6] Hellegouarch Y., Invitation to the Mathematics of Fermat–Wiles, Academic Press, 2002 | MR | Zbl

[7] Kondratyuk A. A., “Loxodromic meromorphic and $\delta$-subharmonic functions”, Proceedings of the Workshop on Complex Analysis and its Applications to Differential and Functional Equations, Reports and Studies in Forestry and Natural Sciences, 14, 2014, 89–100

[8] Crowdy D. G., “Geometric function theory: a modern view of a classical subject”, Nonlinearity (IOP Publishing Ltd and London Mathematical Society), 21 (2008), T205–T219 | MR | Zbl

[9] Schottky F., “Über eine specielle Function welche bei einer bestimmten linearen Transformation ihres Arguments unverändert bleibt”, J. Reine Angew. Math., 101 (1887), 227–272 | MR

[10] Klein F., “Zur Theorie der Abel'schen Functionen”, Math. Ann., 36 (1890), 1–83 | DOI | MR | Zbl

[11] Khrystiyanyn A. Ya., Kondratyuk A. A., “On the Nevanlinna theory for meromorphic functions on annuli. I”, Mat. Stud., 23 (2005), 19–30 | MR | Zbl

[12] Khrystiyanyn A. Ya., Kondratyuk A. A., Sokul's'ka N. B., “Growth characteristics of loxodromic and elliptic functions”, Mat. Stud., 37 (2012), 52–57 | MR | Zbl

[13] Kondratyuk A., Laine I., “Meromorphic functions in multiply connected domains”, Fourier series method in complex analysis (Merkrijärvi, 2005), Univ. Joensuu Dept. Math. Rep. Ser., 10, 2006, 9–111 | MR | Zbl

[14] Eremenko A., Normal holomorphic curves from parabolic regions to projective spaces, 5 Oct. 2007, arXiv: 0710.1281v1[math.CV]

[15] Radchenko L. D., “Normal functions in the complex plane without the origin”, Visnyk Kharkiv Nat. Univ., Ser. Math., Appl. Math., Mech., 931 (2010), 20–32 (in Russian) | Zbl

[16] Hayman W. K., Meromorphic functions, Clarendon Press, Oxford, 1975 | MR