On absolute Cesáro summablity of Fourier series for almost-periodic functions with limiting points at zero
Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 144-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we establish some tests for absolute Cesáro summability of the Fourier series for almost-periodic in the Bezikovich sense. We consider the case, when the Fourier exponents have a limiting point at zero and as a structure characteristics of the studied function we use a high order averaging modulus.
Keywords: absolute summability, almost-periodic function, Fourier series, Fourier exponents, limiting point at zero, averaging module.
@article{UFA_2016_8_4_a10,
     author = {Yu. Kh. Khasanov},
     title = {On absolute {Ces\'aro} summablity of {Fourier} series for almost-periodic functions with limiting points at zero},
     journal = {Ufa mathematical journal},
     pages = {144--151},
     year = {2016},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a10/}
}
TY  - JOUR
AU  - Yu. Kh. Khasanov
TI  - On absolute Cesáro summablity of Fourier series for almost-periodic functions with limiting points at zero
JO  - Ufa mathematical journal
PY  - 2016
SP  - 144
EP  - 151
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a10/
LA  - en
ID  - UFA_2016_8_4_a10
ER  - 
%0 Journal Article
%A Yu. Kh. Khasanov
%T On absolute Cesáro summablity of Fourier series for almost-periodic functions with limiting points at zero
%J Ufa mathematical journal
%D 2016
%P 144-151
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a10/
%G en
%F UFA_2016_8_4_a10
Yu. Kh. Khasanov. On absolute Cesáro summablity of Fourier series for almost-periodic functions with limiting points at zero. Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 144-151. http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a10/

[1] L. Leindler, “Uber die absolute summierbarkeit der Orthogonalreihen”, Acta Sci. Math., 22 (1961), 243–268 | MR | Zbl

[2] K. Tandori, “Uber die orthogonalen funktionen IX. (Absolute summation)”, Acta Sci. Math., 21 (1960), 292–299 | MR | Zbl

[3] Timan M. F., “Ob absolyutnoi skhodimosti i summiruemosti ryadov Fure”, Soobsch. AN Gruz. SSR, 26:6 (1961), 641–646 | Zbl

[4] Stechkin S. B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:2 (1955), 37–40 | Zbl

[5] Grepachevskaya L. V., “Absolyutnaya summiruemost ortogonalnykh ryadov”, Matem. sb., 65(107):3 (1964), 370–389 | MR | Zbl

[6] G. Sunouchi, “On the absolute summability of Fourier series”, Journ. of the Math. Soc. of Japan, 1:2 (1949), 57–65 | DOI | MR | Zbl

[7] Khasanov Yu. Kh., “Ob absolyutnoi summiruemosti ryadov Fure pochti-periodicheskikh funktsii”, Anal. Math., 39 (2013), 259–270 | DOI | MR | Zbl

[8] Baron S. A., Vvedenie v teoriyu summiruemosti ryadov, Valgus, Tallinn, 1977, 280 pp. | MR

[9] A. Besicovitch, Almost periodic functions, Cambridge, 1932, 180 pp.

[10] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953, 396 pp.

[11] Timan M. F., Khasanov Yu. Kh., “Ob absolyutnoi summiruemosti ryadov Fure pochti-periodicheskikh funktsii Bezikovicha”, Ukr. mat. zhurn., 61:9 (2009), 1267–1276 | MR | Zbl

[12] Khasanov Yu. Kh., “Ob absolyutnoi summiruemosti ryadov Fure pochti-periodicheskikh funktsii”, Ukr. mat. zhurn., 65:12 (2013), 1716–1722

[13] Khasanov Yu. Kh., “Ob absolyutnoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii”, Mat. zametki, 94:5 (2013), 745–756 | DOI | MR | Zbl

[14] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, Izd-vo inostr. lit., M., 1963, 360 pp.

[15] Khardi G., Littlvud D., Polia G., Neravenstva, GIIL, M., 1948, 456 pp.