On absolute Ces\'aro summablity of Fourier series for almost-periodic functions with limiting points at zero
Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 144-151
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we establish some tests for absolute Cesáro summability of the Fourier series for almost-periodic in the Bezikovich sense. We consider the case, when the Fourier exponents have a limiting point at zero and as a structure characteristics of the studied function we use a high order averaging modulus.
Keywords:
absolute summability, almost-periodic function, Fourier series, Fourier exponents, limiting point at zero, averaging module.
@article{UFA_2016_8_4_a10,
author = {Yu. Kh. Khasanov},
title = {On absolute {Ces\'aro} summablity of {Fourier} series for almost-periodic functions with limiting points at zero},
journal = {Ufa mathematical journal},
pages = {144--151},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a10/}
}
TY - JOUR AU - Yu. Kh. Khasanov TI - On absolute Ces\'aro summablity of Fourier series for almost-periodic functions with limiting points at zero JO - Ufa mathematical journal PY - 2016 SP - 144 EP - 151 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a10/ LA - en ID - UFA_2016_8_4_a10 ER -
Yu. Kh. Khasanov. On absolute Ces\'aro summablity of Fourier series for almost-periodic functions with limiting points at zero. Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 144-151. http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a10/