On solutions of Cauchy problem for equation $u_{xx}+Q(x)u-P(u)=0$ without singularities in a~given interval
Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 24-41

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to Cauchy problem for equation $u_{xx}+Q(x)u-P(u)=0$, where $Q(x)$ is a $\pi$-periodic function. It is known that for a wide class of the nonlinearities $P(u)$ the “most part” of solutions of Cauchy problem for this equation are singular, i.e., they tend to infinity at some finite point of real axis. Earlier in the case $P(u)=u^3$ this fact allowed us to propose an approach for a complete description of solutions to this equations bounded on the entire line. One of the ingredients in this approach is the studying of the set $\mathcal U^+_L$ introduced as the set of the points $(u_*,u_*')$ in the initial data plane, for which the solutions to the Cauchy problem $u(0)=u_*$, $u_x(0)=u_*'$ is not singular in the segment $[0;L]$. In the present work we prove a series of statements on the set $\mathcal U^+_L$ and on their base, we classify all possible type of the geometry of such sets. The presented results of the numerical calculations are in a good agreement with theoretical statements.
Keywords: ODE with periodic coefficients, nonlinear Schrödinger equation.
Mots-clés : singular solutions
@article{UFA_2016_8_4_a1,
     author = {G. L. Alfimov and P. P. Kizin},
     title = {On solutions of {Cauchy} problem for equation $u_{xx}+Q(x)u-P(u)=0$ without singularities in a~given interval},
     journal = {Ufa mathematical journal},
     pages = {24--41},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a1/}
}
TY  - JOUR
AU  - G. L. Alfimov
AU  - P. P. Kizin
TI  - On solutions of Cauchy problem for equation $u_{xx}+Q(x)u-P(u)=0$ without singularities in a~given interval
JO  - Ufa mathematical journal
PY  - 2016
SP  - 24
EP  - 41
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a1/
LA  - en
ID  - UFA_2016_8_4_a1
ER  - 
%0 Journal Article
%A G. L. Alfimov
%A P. P. Kizin
%T On solutions of Cauchy problem for equation $u_{xx}+Q(x)u-P(u)=0$ without singularities in a~given interval
%J Ufa mathematical journal
%D 2016
%P 24-41
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a1/
%G en
%F UFA_2016_8_4_a1
G. L. Alfimov; P. P. Kizin. On solutions of Cauchy problem for equation $u_{xx}+Q(x)u-P(u)=0$ without singularities in a~given interval. Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 24-41. http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a1/