Representation of analytic functions
Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 3-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider exponential series with complex exponents, whose real and imaginary parts are integer. We prove that each function analytical in the vicinity of the closure of a bounded convex domain in the complex plain can be expanded into the above mentioned series and this series converges absolutely inside this domain and uniformly on compact subsets. The result is based on constructing a regular subset with a prescribed angular density of the sequence of all complex numbers, whose real and imaginary parts are integer.
Keywords: analytic function, exponential series, regular set, density of sequence.
@article{UFA_2016_8_4_a0,
     author = {A. I. Abdulnagimov and A. S. Krivoshyev},
     title = {Representation of analytic functions},
     journal = {Ufa mathematical journal},
     pages = {3--23},
     year = {2016},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a0/}
}
TY  - JOUR
AU  - A. I. Abdulnagimov
AU  - A. S. Krivoshyev
TI  - Representation of analytic functions
JO  - Ufa mathematical journal
PY  - 2016
SP  - 3
EP  - 23
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a0/
LA  - en
ID  - UFA_2016_8_4_a0
ER  - 
%0 Journal Article
%A A. I. Abdulnagimov
%A A. S. Krivoshyev
%T Representation of analytic functions
%J Ufa mathematical journal
%D 2016
%P 3-23
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a0/
%G en
%F UFA_2016_8_4_a0
A. I. Abdulnagimov; A. S. Krivoshyev. Representation of analytic functions. Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 3-23. http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a0/

[1] Krivosheeva O. A., “Oblast skhodimosti ryadov eksponentsialnykh monomov”, Ufimskii matematicheskii zhurnal, 3:2 (2011), 43–56 | MR | Zbl

[2] Leontev A. F., Ryady eksponent, Nauka, M., 1976

[3] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[4] Krivosheev A. S., Krivosheeva O. A., “Zamknutost mnozhestva summ ryadov Dirikhle”, Ufimskii matematicheskii zhurnal, 5:3 (2013), 96–120

[5] Abdulnagimov A. I., Krivosheev A. S., “Pravilno raspredelennye podposledovatelnosti na pryamoi”, Ufimskii matematicheskii zhurnal, 7:1 (2015), 3–12 | MR

[6] Krivosheev A. S., Krivosheeva O. A., “Fundamentalnyi printsip i bazis v invariantnom podprostranstve”, Matem. zametki, 95:5 (2016), 684–697 | DOI | MR

[7] Krivosheev A. S., “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izvestiya RAN. Seriya matematicheskaya, 68:2 (2004), 71–136 | DOI | MR | Zbl

[8] Krivosheeva O. A., “Osobye tochki summy ryada eksponentsialnykh monomov na granitse oblasti skhodimosti”, Algebra i analiz, 23:2 (2011), 162–205 | MR | Zbl

[9] Krivosheeva O. A., Krivosheev A. S., “Osobye tochki summy ryada Dirikhle na pryamoi skhodimosti”, Funkts. analiz i ego prilozh., 49:2 (2015), 54–69 | DOI | MR | Zbl