Symmetries and conservation laws for a~two-component discrete potentiated Korteweg--de~Vries equation
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 109-121
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the work we discuss briefly a method for constructing a formal asymptotic solution to a system of linear difference equations in the vicinity of a special value of the parameter. In the case when the system is the Lax pair for some nonlinear equation on a square graph, the found formal asymptotic solution allows us to describe the conservation laws and higher symmetries for this nonlinear equation. In the work we give a complete description of a series of conservation laws and the higher symmetries hierarchy for a discrete potentiated two-component Korteweg–de Vries equation.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
integrable dynamical systems, equation on square graph, symmetries, conservation laws
Mots-clés : Lax pair.
                    
                  
                
                
                Mots-clés : Lax pair.
@article{UFA_2016_8_3_a9,
     author = {M. N. Poptsova and I. T. Habibullin},
     title = {Symmetries and conservation laws for a~two-component discrete potentiated {Korteweg--de~Vries} equation},
     journal = {Ufa mathematical journal},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a9/}
}
                      
                      
                    TY - JOUR AU - M. N. Poptsova AU - I. T. Habibullin TI - Symmetries and conservation laws for a~two-component discrete potentiated Korteweg--de~Vries equation JO - Ufa mathematical journal PY - 2016 SP - 109 EP - 121 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a9/ LA - en ID - UFA_2016_8_3_a9 ER -
%0 Journal Article %A M. N. Poptsova %A I. T. Habibullin %T Symmetries and conservation laws for a~two-component discrete potentiated Korteweg--de~Vries equation %J Ufa mathematical journal %D 2016 %P 109-121 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a9/ %G en %F UFA_2016_8_3_a9
M. N. Poptsova; I. T. Habibullin. Symmetries and conservation laws for a~two-component discrete potentiated Korteweg--de~Vries equation. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 109-121. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a9/
