Symmetries and conservation laws for a two-component discrete potentiated Korteweg–de Vries equation
Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 109-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we discuss briefly a method for constructing a formal asymptotic solution to a system of linear difference equations in the vicinity of a special value of the parameter. In the case when the system is the Lax pair for some nonlinear equation on a square graph, the found formal asymptotic solution allows us to describe the conservation laws and higher symmetries for this nonlinear equation. In the work we give a complete description of a series of conservation laws and the higher symmetries hierarchy for a discrete potentiated two-component Korteweg–de Vries equation.
Keywords: integrable dynamical systems, equation on square graph, symmetries, conservation laws
Mots-clés : Lax pair.
@article{UFA_2016_8_3_a9,
     author = {M. N. Poptsova and I. T. Habibullin},
     title = {Symmetries and conservation laws for a~two-component discrete potentiated {Korteweg{\textendash}de~Vries} equation},
     journal = {Ufa mathematical journal},
     pages = {109--121},
     year = {2016},
     volume = {8},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a9/}
}
TY  - JOUR
AU  - M. N. Poptsova
AU  - I. T. Habibullin
TI  - Symmetries and conservation laws for a two-component discrete potentiated Korteweg–de Vries equation
JO  - Ufa mathematical journal
PY  - 2016
SP  - 109
EP  - 121
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a9/
LA  - en
ID  - UFA_2016_8_3_a9
ER  - 
%0 Journal Article
%A M. N. Poptsova
%A I. T. Habibullin
%T Symmetries and conservation laws for a two-component discrete potentiated Korteweg–de Vries equation
%J Ufa mathematical journal
%D 2016
%P 109-121
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a9/
%G en
%F UFA_2016_8_3_a9
M. N. Poptsova; I. T. Habibullin. Symmetries and conservation laws for a two-component discrete potentiated Korteweg–de Vries equation. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 109-121. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a9/

[1] W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Dover Books on Advanced Mathematics, Dover, 1987, 374 pp. | MR | Zbl

[2] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980, 320 pp. | MR

[3] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986, 528 pp. | MR

[4] V. G. Drinfeld, V. V. Sokolov, “Lie algebras and equations of Korteweg-de Vries type”, Journal of Soviet Mathematics, 30:2 (1985), 1975–2036 | DOI | MR | Zbl

[5] Journal of Soviet Mathematics, 40:1 (1988), 108–115 | DOI | MR | Zbl | Zbl

[6] Khabibullin I. T., Yangubaeva M. V., “Formalnaya diagonalizatsiya diskretnogo operatora Laksa i zakony sokhraneniya i simmetrii dinamicheskikh sistem”, TMF, 177:3 (2013), 441–467 | DOI | MR

[7] I. T. Habibullin, M. N. Poptsova, “Asymptotic diagonalization of the Discrete Lax pair around singularities and conservation laws for dynamical systems”, J. Phys. A: Math. Theor., 48:11 (2015), 115203, 37 pp. | DOI | MR | Zbl

[8] R. N. Garifullin, R. I. Yamilov, “Integrable discrete nonautonomous quad-equations as Baecklund auto-transformations for known Volterra and Toda type semidiscrete equations”, Journal of Physics: Conference Series, 621 (2015), 012005, 18 pp. | DOI

[9] R. N. Garifullin, I. T. Habibullin, R. I. Yamilov, “Peculiar symmetry structure of some known discrete nonautonomous equations”, J. Phys. A: Math. Theor., 48 (2015), 235201, 27 pp. | DOI | MR | Zbl

[10] A. V. Mikhailov, “Darboux transformations and symmetries of partial difference equations”, Geometric Structures in Integrable Systems, International Workshop (Moscow, Russia, October 30 – November 2, 2012)

[11] Da-jun Zhang, Jun-wei Cheng, Ying-ying Sun, “Deriving conservation laws for ABS lattice equations from Lax pairs”, J. Phys. A: Math. Theor., 46:26 (2013), id 265202 | Zbl

[12] Jun-wei Cheng, D-j Zhang, “Conservation laws of some lattice equations”, Front. Math. China, 8:5 (2013), 1001–1016 | DOI | MR

[13] T. Bridgman, W. Hereman, G. R. W. Quispel, P. H. van der Kamp, “Symbolic computation of Lax Pairs of partial difference equations using consistency around the cube”, Foundations of Computational Mathematics, 13:4 (2013), 517–544 | DOI | MR | Zbl

[14] Fu Wei, Zhang Da-Jun, Zhou Ru-Guang, “A Class of Two-Component Adler-Bobenko-Suris Lattice Equations”, Chinese Phisics Letters, 31:9 (2014), id 090202

[15] R. Hirota, S. Tsujimoto, “Conserved quantities of a class of nonlinear difference-difference equations”, J. Phys. Soc. Jpn., 64:9 (1995), 3125–3127 | DOI | MR | Zbl

[16] F. Nijhoff, H. Capel, “The discrete Korteweg–de Vries equation”, Acta Applicandae Mathematica, 39:1–3 (1995), 133–158 | DOI | MR | Zbl

[17] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of integrable equations on quad-graphs. The consistency approach”, Commun. Math. Phys., 233:3 (2003), 513–543 ; arXiv: nlin.SI/0202024 | DOI | MR | Zbl

[18] A. G. Rasin, J. Schiff, “Infinitely many conservation laws for the discrete KdV equation”, J. Phys. A: Math. Theor., 42:17 (2009), 175205, 16 pp. | DOI | MR | Zbl

[19] D. Levi, M. Petrera, “Continuous symmetries of the lattice potential KdV equation”, J. Phys. A: Math. Theor., 40:15 (2007), 4141–4159 | DOI | MR | Zbl

[20] D. Levi, M. Petrera, C. Scimiterna, “The lattice Schwarzian KdV equation and its symmetries”, J. Phys. A: Math. Theor., 40:42 (2007), 12753–12761 | DOI | MR | Zbl

[21] O. G. Rasin, P. E. Hydon, “Symmetries of Integrable Difference Equations on the Quad-Graph”, Stud. Appl. Math., 119:3 (2007), 253–269 | DOI | MR

[22] A. Tongas, D. Tsoubelis, P. Xenitidis, “Affine linear and $D_4$ symmetric lattice equations: symmetry analysis and reductions”, J. Phys. A: Math. Theor., 40:44 (2007), 13353–13384 | DOI | MR | Zbl