Symmetries and conservation laws for a~two-component discrete potentiated Korteweg--de~Vries equation
Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 109-121

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work we discuss briefly a method for constructing a formal asymptotic solution to a system of linear difference equations in the vicinity of a special value of the parameter. In the case when the system is the Lax pair for some nonlinear equation on a square graph, the found formal asymptotic solution allows us to describe the conservation laws and higher symmetries for this nonlinear equation. In the work we give a complete description of a series of conservation laws and the higher symmetries hierarchy for a discrete potentiated two-component Korteweg–de Vries equation.
Keywords: integrable dynamical systems, equation on square graph, symmetries, conservation laws
Mots-clés : Lax pair.
@article{UFA_2016_8_3_a9,
     author = {M. N. Poptsova and I. T. Habibullin},
     title = {Symmetries and conservation laws for a~two-component discrete potentiated {Korteweg--de~Vries} equation},
     journal = {Ufa mathematical journal},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a9/}
}
TY  - JOUR
AU  - M. N. Poptsova
AU  - I. T. Habibullin
TI  - Symmetries and conservation laws for a~two-component discrete potentiated Korteweg--de~Vries equation
JO  - Ufa mathematical journal
PY  - 2016
SP  - 109
EP  - 121
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a9/
LA  - en
ID  - UFA_2016_8_3_a9
ER  - 
%0 Journal Article
%A M. N. Poptsova
%A I. T. Habibullin
%T Symmetries and conservation laws for a~two-component discrete potentiated Korteweg--de~Vries equation
%J Ufa mathematical journal
%D 2016
%P 109-121
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a9/
%G en
%F UFA_2016_8_3_a9
M. N. Poptsova; I. T. Habibullin. Symmetries and conservation laws for a~two-component discrete potentiated Korteweg--de~Vries equation. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 109-121. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a9/