Behavior of solutions to elliptic equations with non-power nonlinearities in unbounded domains
Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 95-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish estimates characterizing the decay rate as $|x|\to\infty$ of solutions to the Dirichlet problems in unbounded domains for a certain class of elliptic equations with non-power nonlinearities.
Keywords: non-power nonlinearity, Sobolev–Orlicz space, unbounded domain.
Mots-clés : anisotropic elliptic equations
@article{UFA_2016_8_3_a8,
     author = {R. Kh. Karimov and L. M. Kozhevnikova and A. A. Khadzhi},
     title = {Behavior of solutions to elliptic equations with non-power nonlinearities in unbounded domains},
     journal = {Ufa mathematical journal},
     pages = {95--108},
     year = {2016},
     volume = {8},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a8/}
}
TY  - JOUR
AU  - R. Kh. Karimov
AU  - L. M. Kozhevnikova
AU  - A. A. Khadzhi
TI  - Behavior of solutions to elliptic equations with non-power nonlinearities in unbounded domains
JO  - Ufa mathematical journal
PY  - 2016
SP  - 95
EP  - 108
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a8/
LA  - en
ID  - UFA_2016_8_3_a8
ER  - 
%0 Journal Article
%A R. Kh. Karimov
%A L. M. Kozhevnikova
%A A. A. Khadzhi
%T Behavior of solutions to elliptic equations with non-power nonlinearities in unbounded domains
%J Ufa mathematical journal
%D 2016
%P 95-108
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a8/
%G en
%F UFA_2016_8_3_a8
R. Kh. Karimov; L. M. Kozhevnikova; A. A. Khadzhi. Behavior of solutions to elliptic equations with non-power nonlinearities in unbounded domains. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 95-108. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a8/

[1] T. Donaldson, “Nonlinear elliptic boundari value problems in Orlicz–Sobolev spaces”, J. Diff. Eq., 10:3 (1971), 507–528 | DOI | MR | Zbl

[2] Klimov V. S., “Teoremy vlozheniya dlya prostranstv Orlicha i ikh prilozheniya k kraevym zadacham”, Sib. matem. zhurn., 13:2 (1972), 334–348 | MR | Zbl

[3] A. Fougeres, “Operateurs elliptiques du calcul des variations a coefficients tres fortement non lineaires”, C. R. Acad. Sci. Paris Ser. A-B, 274 (1972), 763–766 | MR | Zbl

[4] J. P. Gossez, “Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients”, Trans. Amer. Math. Soc., 190 (1974), 163–206 | DOI | MR

[5] P. Gwiazda, P. Wittbold, A. Wróblewska, A. Zimmermann, Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces. PhD programme: Mathematical methods in natural sciences (MMNS). Preprint No 2011-013, 2011, 32 pp. | MR

[6] Kozhevnikova L. M., Karimov R. Kh., “Povedenie na beskonechnosti reshenii kvazilineinykh ellipticheskikh uravnenii vtorogo poryadka v neogranichennykh oblastyakh”, Ufimsk. matem. zhurn., 2:2 (2010), 53–66 | Zbl

[7] Kozhevnikova L. M., Khadzhi A. A., “Resheniya anizotropnykh ellipticheskikh uravnenii v neogranichennykh oblastyakh”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2013, no. 1, 90–96 | DOI

[8] Gladkov A. L., “Zadacha Dirikhle dlya nekotorykh vyrozhdennykh ellipticheskikh uravnenii v neogranichennykh oblastyakh”, Differents. uravneniya, 29:2 (1993), 267–273 | MR | Zbl

[9] H. Brezis, “Semilinear equations in $R_N$ without condition at infnity”, Appl. Math. Optim., 12:3 (1984), 271–282 | DOI | MR | Zbl

[10] F. Bernis, “Elliptic and parabolic semilinear problems without conditions at infnity”, Arch. Rational Mech. Anal., 106:3 (1989), 217–241 | DOI | MR | Zbl

[11] J. I. Diaz, O. A. Oleinik, “Nonlinear elliptic boundary-value problems in unbounded domains and the asymptotic behaviour of its solution”, C. R. Acad. Sci. Paris Ser. I Math., 315:1 (1992), 787–792 | MR | Zbl

[12] M. Bokalo, O. Domanska, “On well-posedness of boundary problems for elliptic equations in general anisotropic Lebesgue–Sobolev spaces”, Mathematychni Studii, 28:1 (2007), 77–91 | MR | Zbl

[13] Kozhevnikova L. M., Khadzhi A. A., “Suschestvovanie reshenii anizotropnykh ellipticheskikh uravnenii s nestepennymi nelineinostyami v neogranichennykh oblastyakh”, Matem. sb., 206:8 (2015), 99–126 | DOI | MR | Zbl

[14] Kozhevnikova L. M., Khadzhi A. A., “Edinstvennost reshenii anizotropnykh ellipticheskikh uravnenii s nestepennymi nelineinostyami v neogranichennykh oblastyakh”, Problemy matematicheskogo analiza, 85, 2016, 153–163

[15] Rutitskii Ya. B., Krasnoselskii M. A., Vypuklye funktsii i prostranstva Orlicha, Fizmatlit, M., 1958, 587 pp. | MR

[16] Korolev A. G., “Teoremy vlozheniya anizotropnykh prostranstv Soboleva–Orlicha”, Vestn. Mosk. univ. Ser. 1, 1983, no. 1, 32–37 | MR | Zbl

[17] Kozhevnikova L. M., Khadzhi A. A., “O resheniyakh ellipticheskikh uravnenii s nestepennymi nelineinostyami v neogranichennykh oblastyakh”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:1 (2015), 44–62 | DOI

[18] Kozhevnikova L. M., Karimov R. Kh., Khadzhi A. A., “O povedenii reshenii ellipticheskikh uravnenii s nestepennymi nelineinostyami v neogranichennykh oblastyakh”, Aktualnye problemy gumanitarnykh i estestvennykh nauk, 2015, no. 9, 13–17

[19] Khadzhi A. A., “O neravenstve tipa Fridrikhsa”, Nauchno-tekhnicheskii vestnik Povolzhya, 2015, no. 9, 30–33