Asymptotics for the eigenvalues of a~fourth order differential operator in a~``degenerate'' case
Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 79-94
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we consider operator $L$ in $L^2[0,+\infty)$ generated by the differential expression
$\mathcal L(y)=y^{(4)}-2(p(x)y')'+q(x)y$ and boundary conditions $y(0)=y''(0)=0$ in the “degenerate” case, when the roots of associated characteristic equation has different growth rate at the infinity. Assuming a power growth for functions $p$ and $q$ under some additional conditions of smoothness and regularity kind, we obtain an asymptotic equation for the spectrum allowing us to write out several first terms in the asymptotic expansion for the eigenvalues of operator $L$.
Keywords:
differential operators, asymptotics of spectrum, turning point.
@article{UFA_2016_8_3_a7,
author = {Kh. K. Ishkin and Kh. Kh. Murtazin},
title = {Asymptotics for the eigenvalues of a~fourth order differential operator in a~``degenerate'' case},
journal = {Ufa mathematical journal},
pages = {79--94},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a7/}
}
TY - JOUR AU - Kh. K. Ishkin AU - Kh. Kh. Murtazin TI - Asymptotics for the eigenvalues of a~fourth order differential operator in a~``degenerate'' case JO - Ufa mathematical journal PY - 2016 SP - 79 EP - 94 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a7/ LA - en ID - UFA_2016_8_3_a7 ER -
Kh. K. Ishkin; Kh. Kh. Murtazin. Asymptotics for the eigenvalues of a~fourth order differential operator in a~``degenerate'' case. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 79-94. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a7/