@article{UFA_2016_8_3_a6,
author = {L. S. Ibragimova and I. Zh. Mustafina and M. G. Yumagulov},
title = {The asymptotic formulae in the problem on constructing hyperbolicity and stability regions of dynamical systems},
journal = {Ufa mathematical journal},
pages = {58--78},
year = {2016},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a6/}
}
TY - JOUR AU - L. S. Ibragimova AU - I. Zh. Mustafina AU - M. G. Yumagulov TI - The asymptotic formulae in the problem on constructing hyperbolicity and stability regions of dynamical systems JO - Ufa mathematical journal PY - 2016 SP - 58 EP - 78 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a6/ LA - en ID - UFA_2016_8_3_a6 ER -
%0 Journal Article %A L. S. Ibragimova %A I. Zh. Mustafina %A M. G. Yumagulov %T The asymptotic formulae in the problem on constructing hyperbolicity and stability regions of dynamical systems %J Ufa mathematical journal %D 2016 %P 58-78 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a6/ %G en %F UFA_2016_8_3_a6
L. S. Ibragimova; I. Zh. Mustafina; M. G. Yumagulov. The asymptotic formulae in the problem on constructing hyperbolicity and stability regions of dynamical systems. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 58-78. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a6/
[1] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issled., Moskva–Izhevsk, 2002, 560 pp.
[2] Arnold V. I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2000, 400 pp.
[3] Katok A. B., Khasselblat B., Vvedenie v teoriyu dinamicheskikh sistem, MTsNMO, M., 2005, 464 pp.
[4] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Chast 2, Institut kompyuternykh issledovanii, M.–Izhevsk, 2009, 548 pp.
[5] Chiang H. D., Alberto L. F. C., Stability regions of nonlinear dynamical systems: theory, estimation, and applications, Cambridge University Press, 2015, 484 pp. | Zbl
[6] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR
[7] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972, 720 pp. | MR
[8] Loccufier M., Noldus E., “A new trajectory reversing method for estimating stability regions of autonomous nonlinear systems”, Nonlinear Dynamics, 21 (2000), 265–288 | DOI | MR | Zbl
[9] Chiang H. D., Hirsch M. W., Wu F. F., “Stability region of nonlinear autonomous dynamical systems”, Institute of Electrical and Electronics Engineers Trans. on Automatic Control, 33:1 (1988), 16–27 | DOI | MR | Zbl
[10] Amaral F. M., Alberto L. F. C., “Stability Boundary Characterization of Nonlinear Autonomous Dynamical Systems in the Presence of a Saddle-Node Equilibrium Point”, Tend. Mat. Apl. Comput., 13:2 (2012), 143–154 | DOI | MR
[11] Krasnoselskii M. A., Kuznetsov N. A., Yumagulov M. G., “Funktsionalizatsiya parametra i asimptotika tsiklov v bifurkatsii Khopfa”, Avtomatika i telemekhanika, 1996, no. 11, 22–28 | MR | Zbl
[12] Krasnoselskii M. A., Kuznetsov N. A., Yumagulov M. G., “Operatornyi metod analiza ustoichivosti tsiklov pri bifurkatsii Khopfa”, Avtomatika i telemekhanika, 1996, no. 12, 15–24 | MR | Zbl
[13] Chezari L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964, 477 pp.
[14] Malkin I. G., Metody Lyapunova i Puankare v teorii nelineinykh kolebanii, Editorial URSS, M., 2004, 248 pp.
[15] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.
[16] Rozo M., Nelineinye kolebaniya i teoriya ustoichivosti, Nauka, M., 1971, 288 pp.
[17] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1975, 740 pp. | MR
[18] Krasnoselskii M. A., Yumagulov M. G., “Metod funktsionalizatsii parametra v probleme sobstvennykh znachenii”, DAN Rossii, 365:2 (1999), 162–164 | MR
[19] Kuznetsov Yu. A., Elements of Applied Bifurcation Theory, Springer, N.Y., 2004 | MR | Zbl