The asymptotic formulae in the problem on constructing hyperbolicity and stability regions of dynamical systems
Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 58-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper proposes a new general method allowing one to study the problem on constructing hyperbolicity and stability regions for nonlinear dynamical systems. The method is based on a modification of M. Rozo method for studying the stability of linear systems with periodic coefficients depending on a small parameter and on the asymptotic formulae in the perturbation theory of linear operators. We obtain approximate formulae describing the boundary of hyperbolicity and stability regions. As an example, we provide the scheme for constructing the stability regions for Mathieu equation.
Keywords: hyperbolicity regions, stability regions, dynamical systems, small parameter, asymptotic formula.
@article{UFA_2016_8_3_a6,
     author = {L. S. Ibragimova and I. Zh. Mustafina and M. G. Yumagulov},
     title = {The asymptotic formulae in the problem on constructing hyperbolicity and stability regions of dynamical systems},
     journal = {Ufa mathematical journal},
     pages = {58--78},
     year = {2016},
     volume = {8},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a6/}
}
TY  - JOUR
AU  - L. S. Ibragimova
AU  - I. Zh. Mustafina
AU  - M. G. Yumagulov
TI  - The asymptotic formulae in the problem on constructing hyperbolicity and stability regions of dynamical systems
JO  - Ufa mathematical journal
PY  - 2016
SP  - 58
EP  - 78
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a6/
LA  - en
ID  - UFA_2016_8_3_a6
ER  - 
%0 Journal Article
%A L. S. Ibragimova
%A I. Zh. Mustafina
%A M. G. Yumagulov
%T The asymptotic formulae in the problem on constructing hyperbolicity and stability regions of dynamical systems
%J Ufa mathematical journal
%D 2016
%P 58-78
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a6/
%G en
%F UFA_2016_8_3_a6
L. S. Ibragimova; I. Zh. Mustafina; M. G. Yumagulov. The asymptotic formulae in the problem on constructing hyperbolicity and stability regions of dynamical systems. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 58-78. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a6/

[1] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issled., Moskva–Izhevsk, 2002, 560 pp.

[2] Arnold V. I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2000, 400 pp.

[3] Katok A. B., Khasselblat B., Vvedenie v teoriyu dinamicheskikh sistem, MTsNMO, M., 2005, 464 pp.

[4] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Chast 2, Institut kompyuternykh issledovanii, M.–Izhevsk, 2009, 548 pp.

[5] Chiang H. D., Alberto L. F. C., Stability regions of nonlinear dynamical systems: theory, estimation, and applications, Cambridge University Press, 2015, 484 pp. | Zbl

[6] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR

[7] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972, 720 pp. | MR

[8] Loccufier M., Noldus E., “A new trajectory reversing method for estimating stability regions of autonomous nonlinear systems”, Nonlinear Dynamics, 21 (2000), 265–288 | DOI | MR | Zbl

[9] Chiang H. D., Hirsch M. W., Wu F. F., “Stability region of nonlinear autonomous dynamical systems”, Institute of Electrical and Electronics Engineers Trans. on Automatic Control, 33:1 (1988), 16–27 | DOI | MR | Zbl

[10] Amaral F. M., Alberto L. F. C., “Stability Boundary Characterization of Nonlinear Autonomous Dynamical Systems in the Presence of a Saddle-Node Equilibrium Point”, Tend. Mat. Apl. Comput., 13:2 (2012), 143–154 | DOI | MR

[11] Krasnoselskii M. A., Kuznetsov N. A., Yumagulov M. G., “Funktsionalizatsiya parametra i asimptotika tsiklov v bifurkatsii Khopfa”, Avtomatika i telemekhanika, 1996, no. 11, 22–28 | MR | Zbl

[12] Krasnoselskii M. A., Kuznetsov N. A., Yumagulov M. G., “Operatornyi metod analiza ustoichivosti tsiklov pri bifurkatsii Khopfa”, Avtomatika i telemekhanika, 1996, no. 12, 15–24 | MR | Zbl

[13] Chezari L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964, 477 pp.

[14] Malkin I. G., Metody Lyapunova i Puankare v teorii nelineinykh kolebanii, Editorial URSS, M., 2004, 248 pp.

[15] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.

[16] Rozo M., Nelineinye kolebaniya i teoriya ustoichivosti, Nauka, M., 1971, 288 pp.

[17] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1975, 740 pp. | MR

[18] Krasnoselskii M. A., Yumagulov M. G., “Metod funktsionalizatsii parametra v probleme sobstvennykh znachenii”, DAN Rossii, 365:2 (1999), 162–164 | MR

[19] Kuznetsov Yu. A., Elements of Applied Bifurcation Theory, Springer, N.Y., 2004 | MR | Zbl