Inverting of generalized Riemann--Liouville operator by means of integral Laplace transform
Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 41-48
Voir la notice de l'article provenant de la source Math-Net.Ru
We employ the integral Laplace transform to invert the generalized Riemann–Liouville operator in a closed form. We establish that the inverse generalized Riemann–Liouville operator is a differential or integral-differential operator. We establish a relation between Riemann–Liouville operator and Temlyakov–Bavrin operator. We provide new examples of generalized Riemann–Liouville operator.
Keywords:
Riemann–Liouville operator, fractional integral
Mots-clés : Laplace transform.
Mots-clés : Laplace transform.
@article{UFA_2016_8_3_a4,
author = {I. I. Bavrin and O. E. Iaremko},
title = {Inverting of generalized {Riemann--Liouville} operator by means of integral {Laplace} transform},
journal = {Ufa mathematical journal},
pages = {41--48},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a4/}
}
TY - JOUR AU - I. I. Bavrin AU - O. E. Iaremko TI - Inverting of generalized Riemann--Liouville operator by means of integral Laplace transform JO - Ufa mathematical journal PY - 2016 SP - 41 EP - 48 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a4/ LA - en ID - UFA_2016_8_3_a4 ER -
I. I. Bavrin; O. E. Iaremko. Inverting of generalized Riemann--Liouville operator by means of integral Laplace transform. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 41-48. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a4/