Inverting of generalized Riemann--Liouville operator by means of integral Laplace transform
Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 41-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We employ the integral Laplace transform to invert the generalized Riemann–Liouville operator in a closed form. We establish that the inverse generalized Riemann–Liouville operator is a differential or integral-differential operator. We establish a relation between Riemann–Liouville operator and Temlyakov–Bavrin operator. We provide new examples of generalized Riemann–Liouville operator.
Keywords: Riemann–Liouville operator, fractional integral
Mots-clés : Laplace transform.
@article{UFA_2016_8_3_a4,
     author = {I. I. Bavrin and O. E. Iaremko},
     title = {Inverting of generalized {Riemann--Liouville} operator by means of integral {Laplace} transform},
     journal = {Ufa mathematical journal},
     pages = {41--48},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a4/}
}
TY  - JOUR
AU  - I. I. Bavrin
AU  - O. E. Iaremko
TI  - Inverting of generalized Riemann--Liouville operator by means of integral Laplace transform
JO  - Ufa mathematical journal
PY  - 2016
SP  - 41
EP  - 48
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a4/
LA  - en
ID  - UFA_2016_8_3_a4
ER  - 
%0 Journal Article
%A I. I. Bavrin
%A O. E. Iaremko
%T Inverting of generalized Riemann--Liouville operator by means of integral Laplace transform
%J Ufa mathematical journal
%D 2016
%P 41-48
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a4/
%G en
%F UFA_2016_8_3_a4
I. I. Bavrin; O. E. Iaremko. Inverting of generalized Riemann--Liouville operator by means of integral Laplace transform. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 41-48. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a4/