Properties of the resolvent of the Laplace operator on a two-dimensional sphere and a trace formula
Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 22-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we study the properties of the resolvent of the Laplace–Beltrami operator on a two-dimensional sphere $S^2$. We obtain the regularized trace formula for the Laplace-Beltrami operator perturbed by the operator of multiplication by a function in $W^1_2(S^2)$.
Keywords: resolvent, Laplace-Beltrami operator, perturbed operator.
Mots-clés : kernel
@article{UFA_2016_8_3_a3,
     author = {A. I. Atnagulov and V. A. Sadovnichy and Z. Yu. Fazullin},
     title = {Properties of the resolvent of the {Laplace} operator on a~two-dimensional sphere and a~trace formula},
     journal = {Ufa mathematical journal},
     pages = {22--40},
     year = {2016},
     volume = {8},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a3/}
}
TY  - JOUR
AU  - A. I. Atnagulov
AU  - V. A. Sadovnichy
AU  - Z. Yu. Fazullin
TI  - Properties of the resolvent of the Laplace operator on a two-dimensional sphere and a trace formula
JO  - Ufa mathematical journal
PY  - 2016
SP  - 22
EP  - 40
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a3/
LA  - en
ID  - UFA_2016_8_3_a3
ER  - 
%0 Journal Article
%A A. I. Atnagulov
%A V. A. Sadovnichy
%A Z. Yu. Fazullin
%T Properties of the resolvent of the Laplace operator on a two-dimensional sphere and a trace formula
%J Ufa mathematical journal
%D 2016
%P 22-40
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a3/
%G en
%F UFA_2016_8_3_a3
A. I. Atnagulov; V. A. Sadovnichy; Z. Yu. Fazullin. Properties of the resolvent of the Laplace operator on a two-dimensional sphere and a trace formula. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 22-40. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a3/

[1] Sadovnichii V. A., Dubrovskii V. V., “Klassicheskaya formula regulyarizovannogo sleda dlya sobstvennykh chisel operatora Laplasa–Beltrami s potentsialom na sfere”, Dokl. AN SSSR, 319:1 (1991), 61–62 | MR

[2] Podolskii V. E., “Formula regulyarizovannogo sleda operatora Laplasa–Beltrami s nechetnym potentsialom na $S^2$”, Matem. zametki, 56:1 (1994), 71–77 | MR | Zbl

[3] Fazullin Z. Yu., “Formula regulyarizovannogo sleda operatora Laplasa–Beltrami”, Mezhdunarodnaya konferentsiya po kompleksnomu analizu i smezhnym voprosam, Tezisy dokladov, Nizhnii Novgorod, 1997, 80–81

[4] Sadovnichii V. A., Fazullin Z. Yu., “Formula pervogo regulyarizovannogo sleda dlya vozmuscheniya operatora Laplasa–Beltrami”, Differentsialnye uravneniya, 37:3 (2001), 402–409 | MR

[5] Sadovnichii V. A., Fazullin Z. Yu., “Asimptotika sobstvennykh chisel i formula sleda vozmuscheniya operatora Laplasa na sfere $S^2$”, Matem. zametki, 77:3 (2005), 434–448 | DOI | MR | Zbl

[6] Sadovnichii V. A., Fazullin Z. Yu., Atnagulov A. I., “Svoistva rezolventy operatora Laplasa–Beltrami na dvumernoi sfere i formula sledov”, Dokl. AN, 441:2 (2011), 174–176 | MR | Zbl

[7] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981, 512 pp. | MR

[8] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, GIFML, M., 1963, 358 pp. | MR

[9] Sëge G., Ortogonalnye mnogochleny, GIFML, M., 1962, 500 pp.

[10] Vatson D. N., Teoriya Besselevykh funktsii, IL, M., 1949, 798 pp.

[11] Yanke E., Emde F., Lesh F., Spetsialnye funktsii, Nauka, M., 1964, 344 pp.