Mots-clés : kernel
@article{UFA_2016_8_3_a3,
author = {A. I. Atnagulov and V. A. Sadovnichy and Z. Yu. Fazullin},
title = {Properties of the resolvent of the {Laplace} operator on a~two-dimensional sphere and a~trace formula},
journal = {Ufa mathematical journal},
pages = {22--40},
year = {2016},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a3/}
}
TY - JOUR AU - A. I. Atnagulov AU - V. A. Sadovnichy AU - Z. Yu. Fazullin TI - Properties of the resolvent of the Laplace operator on a two-dimensional sphere and a trace formula JO - Ufa mathematical journal PY - 2016 SP - 22 EP - 40 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a3/ LA - en ID - UFA_2016_8_3_a3 ER -
%0 Journal Article %A A. I. Atnagulov %A V. A. Sadovnichy %A Z. Yu. Fazullin %T Properties of the resolvent of the Laplace operator on a two-dimensional sphere and a trace formula %J Ufa mathematical journal %D 2016 %P 22-40 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a3/ %G en %F UFA_2016_8_3_a3
A. I. Atnagulov; V. A. Sadovnichy; Z. Yu. Fazullin. Properties of the resolvent of the Laplace operator on a two-dimensional sphere and a trace formula. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 22-40. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a3/
[1] Sadovnichii V. A., Dubrovskii V. V., “Klassicheskaya formula regulyarizovannogo sleda dlya sobstvennykh chisel operatora Laplasa–Beltrami s potentsialom na sfere”, Dokl. AN SSSR, 319:1 (1991), 61–62 | MR
[2] Podolskii V. E., “Formula regulyarizovannogo sleda operatora Laplasa–Beltrami s nechetnym potentsialom na $S^2$”, Matem. zametki, 56:1 (1994), 71–77 | MR | Zbl
[3] Fazullin Z. Yu., “Formula regulyarizovannogo sleda operatora Laplasa–Beltrami”, Mezhdunarodnaya konferentsiya po kompleksnomu analizu i smezhnym voprosam, Tezisy dokladov, Nizhnii Novgorod, 1997, 80–81
[4] Sadovnichii V. A., Fazullin Z. Yu., “Formula pervogo regulyarizovannogo sleda dlya vozmuscheniya operatora Laplasa–Beltrami”, Differentsialnye uravneniya, 37:3 (2001), 402–409 | MR
[5] Sadovnichii V. A., Fazullin Z. Yu., “Asimptotika sobstvennykh chisel i formula sleda vozmuscheniya operatora Laplasa na sfere $S^2$”, Matem. zametki, 77:3 (2005), 434–448 | DOI | MR | Zbl
[6] Sadovnichii V. A., Fazullin Z. Yu., Atnagulov A. I., “Svoistva rezolventy operatora Laplasa–Beltrami na dvumernoi sfere i formula sledov”, Dokl. AN, 441:2 (2011), 174–176 | MR | Zbl
[7] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981, 512 pp. | MR
[8] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, GIFML, M., 1963, 358 pp. | MR
[9] Sëge G., Ortogonalnye mnogochleny, GIFML, M., 1962, 500 pp.
[10] Vatson D. N., Teoriya Besselevykh funktsii, IL, M., 1949, 798 pp.
[11] Yanke E., Emde F., Lesh F., Spetsialnye funktsii, Nauka, M., 1964, 344 pp.