On $2$-generateness of weakly localizable submodules in the module of entire functions of exponential type and polynomial growth on the real axis
Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 8-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we consider a topological module $\mathcal P(a;b)$ of entire functions, which is the isomorphic image of the Schwarz space of distributions with compact supports in a finite or infinite interval $(a;b)\subset\mathbb R$ under the Fourier–Laplace transform. We prove that each weakly localizable module in $\mathcal P (a;b)$ is either generated by its two elements or is equal to the closure of two submodules of special form. We also provide dual results on subspaces in $C^\infty(a;b)$ invariant w.r.t. the differentiation operator.
Keywords: entire functions, subharmonic functions, finitely generated submodules, description of submodules, local description of submodules, invariant subspaces, spectral synthesis.
Mots-clés : Fourier–Laplace transform
@article{UFA_2016_8_3_a2,
     author = {N. F. Abuzyarova},
     title = {On $2$-generateness of weakly localizable submodules in the module of entire functions of exponential type and polynomial growth on the real axis},
     journal = {Ufa mathematical journal},
     pages = {8--21},
     year = {2016},
     volume = {8},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a2/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
TI  - On $2$-generateness of weakly localizable submodules in the module of entire functions of exponential type and polynomial growth on the real axis
JO  - Ufa mathematical journal
PY  - 2016
SP  - 8
EP  - 21
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a2/
LA  - en
ID  - UFA_2016_8_3_a2
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%T On $2$-generateness of weakly localizable submodules in the module of entire functions of exponential type and polynomial growth on the real axis
%J Ufa mathematical journal
%D 2016
%P 8-21
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a2/
%G en
%F UFA_2016_8_3_a2
N. F. Abuzyarova. On $2$-generateness of weakly localizable submodules in the module of entire functions of exponential type and polynomial growth on the real axis. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 8-21. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a2/

[1] Sebastyan-i-Silva Zh., “O nekotorykh klassakh LVP, vazhnykh v prilozheniyakh”, Matematika. Sb. perevodov instrannykh statei, 1:1 (1957), 60–77

[2] B. Y. Levin, Yu. Lyubarskii, M. Sodin, V. Tkachenko, Lectures on entire functions, Rev. Edition, AMS, Providence, Rhode Island, 1996, 254 pp. | MR | Zbl

[3] Abuzyarova N. F., “Spektralnyi sintez v prostranstve Shvartsa beskonechno differentsiruemykh funktsii”, Doklady RAN, 457:5 (2014), 510–513 | DOI | MR | Zbl

[4] Abuzyarova N. F., “Zamknutye podmoduli v module tselykh funktsii eksponentsialnogo tipa i polinomialnogo rosta na veschestvennoi osi”, Ufimskii matem. zhurnal, 6:4 (2014), 3–18 | MR

[5] Krasichkov-Ternovskii I. F., “Lokalnoe opisanie zamknutykh idealov i podmodulei analiticheskikh funktsii odnoi peremennoi. I”, Izvestiya AN SSSR, seriya matem., 43:1 (1979), 44–66 | MR | Zbl

[6] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. I. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sbornik, 87(129):4 (1972), 459–489 | MR | Zbl

[7] Krasichkov-Ternovskii I. F., “Lokalnoe opisanie zamknutykh idealov i podmodulei analiticheskikh funktsii odnoi peremennoi. II”, Izvestiya AN SSSR, seriya matem., 43:2 (1979), 309–341 | MR | Zbl

[8] A. Aleman, A. Baranov, Yu. Belov, “Subspaces of $C^\infty$ invariant under the differentiation”, Journal of Functional Analysis, 268 (2015), 2421–2439 | DOI | MR | Zbl

[9] Abuzyarova N. F., “Nekotorye svoistva glavnykh podmodulei v module tselykh funktsii eksponentsialnogo tipa i polinomialnogo rosta na veschestvennoi osi”, Ufimskii matem. zhurnal, 8:1 (2016), 3–14 | MR

[10] Abuzyarova N. F., “Ob odnom svoistve podprostranstv, dopuskayuschikh spektralnyi sintez”, Matem. sbornik, 190:4 (1999), 3–22 | DOI | MR | Zbl

[11] Abuzyarova N. F., “Konechno porozhdennye podmoduli v module tselykh funktsii, opredelyaemom ogranicheniyami na indikator”, Matem. zametki, 71:1 (2002), 3–17 | DOI | MR | Zbl

[12] Khabibullin B. N., “Zamknutye podmoduli golomorfnykh funktsii s dvumya porozhdayuschimi”, Funkts. analiz i ego prilozheniya, 38:1 (2004), 65–80 | DOI | MR | Zbl

[13] Sedletskii A. M., “Analiticheskie preobrazovaniya Fure i eksponentsialnye approksimatsii. I”, Sovr. matem. Fund. napravleniya, 5, 2003, 3–152 | MR | Zbl

[14] Yulmukhametov R. S., “Approksimatsiya subgarmonicheskikh funktsii”, Anal. Math., 11 (1985), 257–282 | DOI | MR | Zbl

[15] Yulmukhametov R. S., “Reshenie problemy L. Erenpraisa o faktorizatsii”, Matem. sb., 190:4 (1999), 123–157 | DOI | MR | Zbl

[16] A. Aleman, B. Korenblum, “Derivation-Invariant Subspaces of $C^\infty$”, Computation Methods and Function Theory, 8:2 (2008), 493–512 | DOI | MR | Zbl

[17] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986, 462 pp.

[18] A. Beurling, P. Malliavin, “On the closure of characters and the zeros of entire functions”, Acta Math., 118:1–4 (1967), 79–93 | DOI | MR | Zbl

[19] Abanin A. V., Ultra-differentsiruemye funktsii i ultra-raspredeleniya, Nauka, M., 2007, 222 pp.

[20] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 2, Differentsialnye operatory s postoyannymi koeffitsientami, Mir, M., 1986, 455 pp.

[21] P. Koosis, The logarithmic integral, v. I, Cambridge Univ. Press, 1998, 606 pp. | MR | Zbl

[22] R. P. Boas (Jr.), Entire functions, Acad. Press. Publ. Inc., New York, 1954, 276 pp. | MR | Zbl

[23] Ronkin L. I., Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, Moskva, 1971, 430 pp. | MR

[24] Favorov S. Yu., “O slozhenii indikatorov tselykh i subgarmonicheskikh funktsii mnogikh peremennykh”, Matem. sb., 105(147):1 (1978), 128–140 | MR | Zbl