Mots-clés : polyharmonic equation
@article{UFA_2016_8_3_a13,
author = {B. Kh. Turmetov},
title = {On solvability of a~boundary value problem for an inhomogeneous polyharmonic equation with a~fractional order boundary operator},
journal = {Ufa mathematical journal},
pages = {155--170},
year = {2016},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a13/}
}
TY - JOUR AU - B. Kh. Turmetov TI - On solvability of a boundary value problem for an inhomogeneous polyharmonic equation with a fractional order boundary operator JO - Ufa mathematical journal PY - 2016 SP - 155 EP - 170 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a13/ LA - en ID - UFA_2016_8_3_a13 ER -
%0 Journal Article %A B. Kh. Turmetov %T On solvability of a boundary value problem for an inhomogeneous polyharmonic equation with a fractional order boundary operator %J Ufa mathematical journal %D 2016 %P 155-170 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a13/ %G en %F UFA_2016_8_3_a13
B. Kh. Turmetov. On solvability of a boundary value problem for an inhomogeneous polyharmonic equation with a fractional order boundary operator. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 155-170. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a13/
[1] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Mathematics studies, Elsevier, North-Holland, 2006, 539 pp. | MR | Zbl
[2] Berdyshev A. S., Turmetov B. Kh., Kadirkulov B. J., “Nekotorye svoistva i primeneniya integrodifferentsialnykh operatorov tipa Adamara-Marsho v klasse garmonicheskikh funktsii”, Sibirskii matematicheskii zhurnal, 53:4 (2012), 752–764 | MR | Zbl
[3] V. Karachik, B. Turmetov, B. Torebek, “On some integro-differential operators in the class of harmonic functions and their applications”, Siberian Advances in Mathematics, 22:2 (2012), 115–134 | DOI | MR
[4] Kirane M., Tatar N.-e., “Otsutstvie lokalnykh i globalnykh reshenii ellipticheskikh sistem s drobnymi po vremeni dinamicheskimi kraevymi usloviyami”, Sibirskii matematicheskii zhurnal, 48:3 (2007), 593–605 | MR | Zbl
[5] Kirane M., Tatar N.-e., “Otsutstvie reshenii uravneniya Laplasa s dinamicheskim kraevym usloviem drobnogo tipa”, Sibirskii matematicheskii zhurnal, 48:5 (2007), 1056–1064 | MR | Zbl
[6] M. Krasnoschok, N. Vasylyeva, “On a nonclassical fractional boundary-value problem for the Laplace operator”, Journal of Differential Equations, 257:6 (2014), 1814–1839 | DOI | MR | Zbl
[7] B. Torebek, B. Turmetov, “On solvability of a boundary value problem for the Poisson equation with the boundary operator of a fractional order”, Boundary Value Problems, 2013 (2013), 93 | DOI | MR | Zbl
[8] Turmetov B., “Ob odnoi kraevoi zadache dlya garmonicheskogo uravneniya”, Differentsialnye uravneniya, 32:8 (1996), 1089–1092 | MR | Zbl
[9] Turmetov B., “O gladkosti resheniya odnoi kraevoi zadachi s granichnym operatorom drobnogo poryadka”, Matematicheskie trudy, 7:1 (2005), 189–199 | MR | Zbl
[10] Turmetov B., Torebek B., “Modifitsirovannye operatory Bavrina i ikh primeneniya”, Differentsialnye uravneniya, 51:2 (2015), 240–250 | DOI | MR | Zbl
[11] T. Akhmedov, E. Veliev, M. Ivakhnychenko, “Fractional operators approach in electromagnetic wave reflection problems”, Journal of electromagnetic waves and applications, 21:13 (2007), 1787–1802
[12] Akhmedov T., Veliev E., Ivakhchenko M., “Granichnye usloviya s drobnymi proizvodnymi v zadachakh teorii difraktsii”, Doklady NAN Azerbaidzhana, 65:2 (2009), 61–68 | MR
[13] E. Veliev, M. Ivakhnychenko, “Fractional boundary conditions in plane wave diffraction on a strip”, Progress in Electromagnetics Research, 79 (2008), 443–462 | DOI
[14] Bitsadze A., “O nekotorykh svoistvakh poligarmonicheskikh funktsii”, Differentsialnye uravneniya, 24:5 (1988), 825–831 | MR | Zbl
[15] Kanguzhin B., Koshanov B., “Neobkhodimye i dostatochnye usloviya razreshimosti kraevykh zadach dlya neodnorodnogo poligarmonicheskogo uravneniya v share”, Ufimskii matematicheskii zhurnal, 2:2 (2010), 41–52 | Zbl
[16] V. Karachik, B. Turmetov, A. Bekayeva, “Solvability conditions of the Neumann boundary value problem for the biharmonic equation in the unit ball”, International Journal of Pure and Applied Mathematics, 81:3 (2012), 487–495
[17] V. Karachik, “Solvability Conditions for the Neumann Problem for the Homogeneous Polyharmonic Equation”, Differential Equations, 50:11 (2014), 1449–1456 | DOI | MR | Zbl
[18] V. Karachik, “On solvability conditions for the Neumann problem for a polyharmonic equation in the unit ball”, Journal of Applied and Industrial Mathematics, 8:1 (2014), 63–75 | DOI | MR
[19] B. Turmetov, R. Ashurov, “On solvability of the Neumann boundary value problem for a non-homogeneous polyharmonic equation in a ball”, Boundary Value Problems, 2013 (2013), 162 | DOI | MR | Zbl
[20] Bekaeva A., Karachik V., Turmetov B., “O razreshimosti nekotorykh kraevykh zadach dlya poligarmonicheskogo uravneniya s granichnym operatorom Adamara–Marsho”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2014, no. 7, 15–29 | MR | Zbl
[21] A. Berdyshev, A. Cabada, B. Turmetov, “On solvability of a boundary value problem for a nonhomogeneous biharmonic equation with a boundary operator of a fractional order”, Acta Mathematica Scientia, 34B:6 (2014), 1695–1706 | DOI | MR | Zbl
[22] A. Berdyshev, A. Cabada, B. Turmetov, “On Solvability of Some Boundary Value Problem for Polyharmonic Equation with Boundary Operator of a Fractional Order”, Applied Mathematical Modelling, 39 (2015), 45–45 | DOI | MR
[23] B. Turmetov, “Solvability of fractional analogues of the Neumann problem for a nonhomogeneous biharmonic equation”, Electronic Journal of Differential Equations, 2015 (2015), 82, 21 pp. | MR | Zbl
[24] S. Agmon, A. Duglas, L. Nirenberg, “Estimates Near the Boundary for Elliptic Partial. Differential Equations Satisfying General Boundary Conditions. I”, Communications on Pure Appl. Math., 12 (1959), 623–727 | DOI | MR | Zbl
[25] F. Gazzola, H.-Ch. Grunau, S. Guido, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin, 2010, 429 pp. | MR | Zbl
[26] Kal'menov T. S., Suragan D., “On a new method for constructing the green function of the Dirichlet problem for the polyharmonic equation”, Differential Equations, 48:3 (2012), 441–445 | DOI | MR | Zbl
[27] T. Kal'menov, B. Koshanov, M. Nemchenko, “Green function representation for the Dirichlet problem of the polyharmonic equation in a sphere”, Complex Variables and Elliptic Equations, 53:2 (2008), 177–183 | DOI | MR | Zbl