On solvability by quadratures conditions for second order hyperbolic systems
Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 130-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present work we consider boundary value problems for second order hyperbolic system with higher partial derivatives $u_{xy}$, $v_{xy}$ and $u_{xx}$, $v_{yy}$. The aim of the study is to find sufficient conditions for solvability of the considered problems by quadratures. We proposed a method for finding explicit solutions for the mentioned problems based on factorization of the equations in the original systems. As a result, in terms of the coefficients of these systems, we obtain 14 conditions for solvability by quadratures for each boundary value problem.
Keywords: hyperbolic system, boundary value problem, solvability by quadratures, factorization of equation.
Mots-clés : Goursat problem
@article{UFA_2016_8_3_a11,
     author = {E. A. Sozontova},
     title = {On solvability by quadratures conditions for second order hyperbolic systems},
     journal = {Ufa mathematical journal},
     pages = {130--135},
     year = {2016},
     volume = {8},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a11/}
}
TY  - JOUR
AU  - E. A. Sozontova
TI  - On solvability by quadratures conditions for second order hyperbolic systems
JO  - Ufa mathematical journal
PY  - 2016
SP  - 130
EP  - 135
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a11/
LA  - en
ID  - UFA_2016_8_3_a11
ER  - 
%0 Journal Article
%A E. A. Sozontova
%T On solvability by quadratures conditions for second order hyperbolic systems
%J Ufa mathematical journal
%D 2016
%P 130-135
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a11/
%G en
%F UFA_2016_8_3_a11
E. A. Sozontova. On solvability by quadratures conditions for second order hyperbolic systems. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 130-135. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a11/

[1] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[2] Zhiber A. V., Mikhailova Yu. G., “Algoritm postroeniya obschego resheniya $n$-komponentnoi giperbolicheskoi sistemy uravnenii s nulevymi invariantami Laplasa i kraevye zadachi”, Ufimsk. matem. zhurn., 1:3 (2009), 28–45 | Zbl

[3] Voronova Yu. G., “O zadache Koshi dlya lineinykh giperbolicheskikh sistem uravnenii s nulevymi obobschennymi invariantami Laplasa”, Ufimsk. matem. zhurn., 2:2 (2010), 20–26 | Zbl

[4] Chekmarev T. V., “Reshenie giperbolicheskoi sistemy dvukh differentsialnykh uravnenii v chastnykh proizvodnykh s dvumya neizvestnymi funktsiyami”, Izv. vuzov. Matematika, 1959, no. 6, 220–228 | Zbl

[5] Bitsadze A. V., Uravneniya matematicheskoi fiziki, Nauka, M., 1982 | MR

[6] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazan, 2001

[7] Zhegalov V. I., “K sluchayam razreshimosti giperbolicheskikh uravnenii v terminakh spetsialnykh funktsii”, Neklassicheskie uravneniya matematicheskoi fiziki, IM SO RAN, Novosibirsk, 2002, 73–79 | Zbl

[8] Zhegalov V. I., Sarvarova I. M., “K usloviyam razreshimosti zadachi Gursa v kvadraturakh”, Izv. vuzov. Matematika, 2013, no. 3, 68–73 | MR | Zbl

[9] Mironova L. B., “O kharakteristicheskikh zadachakh dlya odnoi sistemy s dvukratnymi starshimi chastnymi proizvodnymi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2006, no. 43, 31–37 | DOI

[10] Zhegalov V. I., Mironova L. B., “Ob odnoi sisteme uravnenii s dvukratnymi starshimi chastnymi proizvodnymi”, Izv. vuzov. Matematika, 2007, no. 3, 12–21 | MR | Zbl