Mots-clés : homotopy classification
@article{UFA_2016_8_3_a10,
author = {A. Yu. Savin and B. Yu. Sternin},
title = {Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary},
journal = {Ufa mathematical journal},
pages = {122--129},
year = {2016},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a10/}
}
TY - JOUR AU - A. Yu. Savin AU - B. Yu. Sternin TI - Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary JO - Ufa mathematical journal PY - 2016 SP - 122 EP - 129 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a10/ LA - en ID - UFA_2016_8_3_a10 ER -
%0 Journal Article %A A. Yu. Savin %A B. Yu. Sternin %T Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary %J Ufa mathematical journal %D 2016 %P 122-129 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a10/ %G en %F UFA_2016_8_3_a10
A. Yu. Savin; B. Yu. Sternin. Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 122-129. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a10/
[1] M. F. Atiyah, I. M. Singer, “The index of elliptic operators. I”, Ann. of Math., 87 (1968), 484–530 | DOI | MR | Zbl
[2] Savin A. Yu., Sternin B. Yu., “O probleme gomotopicheskoi klassifikatsii ellipticheskikh kraevykh zadach”, Dokl. AN, 377:2 (2001), 165–169 | MR | Zbl
[3] S. T. Melo, R. Nest, E. Schrohe, “$C^*$-structure and $K$-theory of Boutet de Monvel's algebra”, J. Reine Angew. Math., 561 (2003), 145–175 | MR | Zbl
[4] S. T. Melo, Th. Schick, E. Schrohe, “A $K$-theoretic proof of Boutet de Monvel's index theorem for boundary value problems”, J. Reine Angew. Math., 599 (2006), 217–233 | MR | Zbl
[5] A. Savin, “Elliptic Operators on Manifolds with Singularities and $K$-homology”, K-theory, 34:1 (2005), 71–98 | DOI | MR | Zbl
[6] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “O gomotopicheskoi klassifikatsii ellipticheskikh operatorov na stratifitsirovannykh mnogoobraziyakh”, Izv. RAN. Ser. matem., 71:6 (2007), 91–118 | DOI | MR | Zbl
[7] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “O gomotopicheskoi klassifikatsii ellipticheskikh operatorov na mnogoobraziyakh s uglami”, Dokl. AN, 413:1 (2007), 16–19 | MR | Zbl
[8] M. F. Atiyah, R. Bott, “The index problem for manifolds with boundary”, Bombay Colloquium on Differential Analysis, Oxford University Press, Oxford, 1964, 175–186 | MR
[9] R. Melrose, F. Rochon, “Index in $K$-theory for families of fibred cusp operators”, $K$-Theory, 37:1–2 (2006), 25–104 | DOI | MR | Zbl
[10] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “Nekommutativnaya geometriya i klassifikatsiya ellipticheskikh operatorov”, SMFN, 29, 2008, 131–164 | MR
[11] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “Indeks Ati–Botta na stratifitsirovannykh mnogoobraziyakh”, SMFN, 34, 2009, 100–108 | MR
[12] J.-M. Lescure, “Elliptic symbols, elliptic operators and Poincaré duality on conical pseudomanifolds”, J. K-Theory, 4:2 (2009), 263–297 | DOI | MR | Zbl
[13] B. Monthubert, V. Nistor, “A topological index theorem for manifolds with corners”, Compos. Math., 148:2 (2012), 640–668 | DOI | MR | Zbl
[14] A. Antonevich, A. Lebedev, Functional-Differential Equations, v. I, Pitman Monographs and Surveys in Pure and Applied Mathematics, 70, $C^*$-Theory, Longman, Harlow, 1994 | MR | Zbl
[15] A. B. Antonevich, A. V. Lebedev, “Functional equations and functional operator equations. A $C^*$-algebraic approach”, Proceedings of the St. Petersburg Mathematical Society, v. 6, Amer. Math. Soc. Transl. Ser. 2, 199, Amer. Math. Soc., Providence, RI, 1998, 25–116 | DOI | MR
[16] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, Elliptic theory and noncommutative geometry, Operator Theory: Advances and Applications, 183, Birkhäuser Verlag, Basel, 2008 | MR | Zbl
[17] A. Savin, B. Sternin, “Elliptic theory for operators associated with diffeomorphisms of smooth manifolds”, Pseudo-Differential Operators, Generalized Functions and Asymptotics, Operator Theory: Advances and Applications, 231, Birkhäuser, 2013, 1–26 | MR | Zbl
[18] P. Baum, A. Connes, N. Higson, “Classifying space for proper actions and $K$-theory of group $C^*$-algebras”, $C^*$-algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., 167, Amer. Math. Soc., Providence, RI, 1994, 240–291 | DOI | MR
[19] Gokhberg I. Ts., Krein M. G., “Sistemy integralnykh uravnenii na poluosi s yadrami zavisyaschimi ot raznosti argumentov”, UMN, 13:2 (1958), 3–72 | MR | Zbl
[20] Vishik M. I., Eskin G. I., “Ellipticheskie uravneniya v svertkakh v ogranichennoi oblasti i ikh prilozheniya”, UMN, 22:1 (1965), 15–76 | MR | Zbl
[21] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, Moskva, 1973 | MR
[22] S. Rempel, B.-W. Schulze, “Parametrices and boundary symbolic calculus for elliptic boundary problems without the transmission property”, Math. Nachr., 105 (1982), 45–149 | DOI | MR | Zbl
[23] A. L. T. Paterson, Amenability, Mathematical Surveys and Monographs, 29, American Mathematical Society, Providence, RI, 1988 | DOI | MR | Zbl
[24] A. Antonevich, M. Belousov, A. Lebedev, Functional differential equations, Parts 1, 2, v. II, Pitman Monographs and Surveys in Pure and Applied Mathematics, 94, 95, $C^*$-applications, Longman, Harlow, 1998 | MR | Zbl
[25] M. Pimsner, D. Voiculescu, “Exact sequences for $K$-groups and {E}xt-groups of certain cross-product $C^*$-algebras”, J. Oper. Theory, 4 (1980), 93–118 | MR | Zbl
[26] Fedosov B. V., “Teoremy ob indekse”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 65, VINITI, Moskva, 1991, 165–268 | MR | Zbl
[27] B. Blackadar, $K$-Theory for Operator Algebras, Mathematical Sciences Research Institute Publications, 5, Second edition, Cambridge University Press, 1998 | MR | Zbl