Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary
Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 122-129
Voir la notice de l'article provenant de la source Math-Net.Ru
Given an action of a discrete group $G$ on a smooth compact manifold $M$ with a boundary, we consider a class of operators generated by pseudodifferential operators on $M$ and shift operators associated with the group action. For elliptic operators in this class, we obtain a classification up to stable homotopies and show that the group of stable homotopy classes of such problems is isomorphic to the $K$-group of the crossed product of the algebra of continuous functions on the cotangent bundle over the interior of the manifold and the group $G$ acting on this algebra by automorphisms.
Keywords:
elliptic operator, $K$-theory, crossed product, $G$-operator.
Mots-clés : homotopy classification
Mots-clés : homotopy classification
@article{UFA_2016_8_3_a10,
author = {A. Yu. Savin and B. Yu. Sternin},
title = {Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary},
journal = {Ufa mathematical journal},
pages = {122--129},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a10/}
}
TY - JOUR AU - A. Yu. Savin AU - B. Yu. Sternin TI - Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary JO - Ufa mathematical journal PY - 2016 SP - 122 EP - 129 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a10/ LA - en ID - UFA_2016_8_3_a10 ER -
%0 Journal Article %A A. Yu. Savin %A B. Yu. Sternin %T Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary %J Ufa mathematical journal %D 2016 %P 122-129 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a10/ %G en %F UFA_2016_8_3_a10
A. Yu. Savin; B. Yu. Sternin. Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 122-129. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a10/