Recursion operator for a system with non-rational Lax representation
Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 112-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a hydrodynamic type system, waterbag model, that admits a dispersionless Lax representation with a logarithmic Lax function. Using the Lax representation, we construct a recursion operator of the system. We note that the constructed recursion operator is not compatible with the natural Hamiltonian representation of the system.
Keywords: recursion operator, hydrodynamic type systems, non-rational Lax representation.
@article{UFA_2016_8_2_a9,
     author = {K. Zheltukhin},
     title = {Recursion operator for a~system with non-rational {Lax} representation},
     journal = {Ufa mathematical journal},
     pages = {112--118},
     year = {2016},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a9/}
}
TY  - JOUR
AU  - K. Zheltukhin
TI  - Recursion operator for a system with non-rational Lax representation
JO  - Ufa mathematical journal
PY  - 2016
SP  - 112
EP  - 118
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a9/
LA  - en
ID  - UFA_2016_8_2_a9
ER  - 
%0 Journal Article
%A K. Zheltukhin
%T Recursion operator for a system with non-rational Lax representation
%J Ufa mathematical journal
%D 2016
%P 112-118
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a9/
%G en
%F UFA_2016_8_2_a9
K. Zheltukhin. Recursion operator for a system with non-rational Lax representation. Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 112-118. http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a9/

[1] J. H. Chang, “Remarks on the waterbag model of dispersionless Toda hierarchy”, J. Non. Math. Phys., 15, Suppl. 3 (2008), 112–123 | DOI | MR

[2] M. V. Pavlov, Explicit solutions of the WDVV equation determined by the 'flat' hydrodynamic reductions of the Egorov hydrodynamic chains, Preprint, 2006, arXiv: nlin.SI/0606008

[3] A. Boyarskii, A. Marshakov, O. Ruchayskiy, P. Wiegmann, A. Zabrodin, “Associativity equations in dispersionless integrable hierarchies”, Phys. Lett. B, 515:3–4 (2001), 483–492 | DOI | MR

[4] B. A. Dubrovin, Geometry of 2D Topological Field Theories, Lecture Notes in Mathematics, 1620, Springer, Berlin, 1996 | MR | Zbl

[5] S. P. Tsarev, “Classical differential geometry and integrability of systems of hydrodynamic type”, Applications of analytic and geometric methods to nonlinear differential equations, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 413, 1993, 241–249 | MR | Zbl

[6] S. P. Tsarev, “Integrability of equations of hydrodynamic type from the end of the 19th to the end of the 20th century”, Integrability: the Seiberg–Witten and Whitham equations, Gordon and Breach, Amsterdam, 2000, 251–265 | MR | Zbl

[7] M. V. Pavlov, “The Kupershmidt hydrodynamic chains and lattices”, Int. Math. Res. Not., 2006 (2006), id 46987 | MR | Zbl

[8] M. Gürses, A. Karasu, V. V. Sokolov, “On construction of recursion operator from Lax representation”, J. Math. Phys., 40:12 (1999), 6473–6490 | DOI | MR | Zbl

[9] M. Blaszak, “On the construction of recursion operator and algebra of symmetries for field and lattice systems”, Rep. Math. Phys., 48:1–2 (2001), 27–38 | DOI | MR | Zbl

[10] M. Gürses, K. Zheltukhin, “Recursion operators of some equations of hydrodynamic type”, J. Math. Phys., 42:3 (2001), 1309–1325 | DOI | MR | Zbl

[11] K. Zheltukhin, “Recursion operator and dispersionless rational Lax representation”, Phys. Lett. A, 297:5–6 (2002), 402–407 | DOI | MR | Zbl

[12] B. Szablikowski, M. Blaszak, “Meromorphic Lax representations of $(1+1)$-dimensional multi-Hamiltonian dispersionless systems”, J. Math. Phys., 47:9 (2006), 092701–092724 | DOI | MR

[13] Funct. Anal. Appl., 10:4 (1976), 259–273 | DOI | MR | Zbl

[14] L. C. Li, “Classical $r$-matrices and compatible Poisson structures for Lax equation on Poisson algebra”, Comm. Math. Phys., 203:3 (1999), 573–592 | DOI | MR | Zbl