On resolvent of multi-dimensional operators with frequent alternation of boundary conditions: critical case
Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 65-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an elliptic operator in a multi-dimensional domain with frequent alternation of Dirichlet and Robin conditions. We study the case, when the homogenized operator has Robin condition with an additional coefficient generated by the geometry of the alternation. We prove the norm resolvent convergence of the perturbed operator to the homogenized one and obtain the estimate for the rate of convergence. We construct the complete asymptotic expansion for the resolvent in the case, when it acts on sufficiently smooth functions.
Keywords: frequent alternation, homogenization, norm resolvent convergence, asymptotics.
@article{UFA_2016_8_2_a6,
     author = {T. F. Sharapov},
     title = {On resolvent of multi-dimensional operators with frequent alternation of boundary conditions: critical case},
     journal = {Ufa mathematical journal},
     pages = {65--94},
     year = {2016},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a6/}
}
TY  - JOUR
AU  - T. F. Sharapov
TI  - On resolvent of multi-dimensional operators with frequent alternation of boundary conditions: critical case
JO  - Ufa mathematical journal
PY  - 2016
SP  - 65
EP  - 94
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a6/
LA  - en
ID  - UFA_2016_8_2_a6
ER  - 
%0 Journal Article
%A T. F. Sharapov
%T On resolvent of multi-dimensional operators with frequent alternation of boundary conditions: critical case
%J Ufa mathematical journal
%D 2016
%P 65-94
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a6/
%G en
%F UFA_2016_8_2_a6
T. F. Sharapov. On resolvent of multi-dimensional operators with frequent alternation of boundary conditions: critical case. Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 65-94. http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a6/

[1] Chechkin G. A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Matem. sb., 184:6 (1993), 99–150 | MR | Zbl

[2] Gadylshin R. R., “Osrednenie i asimptotiki v zadache o chasto zakreplennoi membrane”, Zh. vychisl. matem. i matem. fiz., 41:12 (2001), 1857–1869 | MR | Zbl

[3] A. Friedman, Ch. Huang, J. Yong, “Effective permeability of the boundary of a domain”, Commun. Part. Diff. Equat., 20:1–2 (1995), 59–102 | DOI | MR | Zbl

[4] Chechkin G. A., “O kraevykh zadachakh dlya ellipticheskogo uravneniya vtorogo poryadka s ostsilliruyuschimi granichnymi usloviyami”, Neklassicheskie differentsialnye uravneniya v chastnykh proizvodnykh, IM SOAN SSSR, Novosibirsk, 1988, 95–104 | MR

[5] A. Damlamian, Li Ta-Tsicn (Li Daqian), “Boundary homogenization for ellpitic problems”, J. Math. Pure et Appl., 66:4 (1987), 351–361 | MR | Zbl

[6] M. Lobo, E. Perez, “Asymptotic behaviour of an elastic bodx with a surface having small stuck regions”, RAIRO Model. Math. Anal. Numer., 22:4 (1988), 609–624 | MR | Zbl

[7] G. Chechkin, E. Doronina, “On the asymptotics of the spectrum of a boundary value problem with nonperiodic rapidly alternating boundary conditions”, Funct. Differ. Equ., 8:1–2 (2001), 111–122 | MR | Zbl

[8] O. Oleinik, G. Chechkin, “Solutions and eigenvalues of the boundary value problems with rapidly alternating boundary conditions for the system of elasticity”, Rendiconti Lincei: Matematica e Applicazioni. Scric IX, 7:1 (1996), 5–15 | MR | Zbl

[9] Borisov D. I., “Asimptotiki i otsenki sobstvennykh elementov laplasiana s chastoi neperiodicheskoi smenoi granichnykh uslovii”, Izv. RAN., Ser. matem., 67:6 (2003), 23–70 | DOI | MR | Zbl

[10] Borisov D. I., “O zadache s chastym neperiodicheskim cheredovaniem kraevykh uslovii na bystro ostsilliruyuschikh mnozhestvakh”, Zh. vychis. mat. mat. fiz., 46:2 (2006), 284–294 | MR | Zbl

[11] Chechkin G. A., Doronina E. I., “Ob usrednenii reshenii ellipticheskogo uravneniya vtorogo poryadka s neperiodicheskimi bystro menyayuschimisya granichnymi usloviyami”, Vestn. Mosk. Univ. Ser. 1. Matem. Mekh., 2001, no. 1, 14–19 | MR | Zbl

[12] Belyaev A. G., Chechkin G. A., “Usrednenie smeshannoi kraevoi zadachi dlya operatora Laplasa v sluchae, kogda “predelnaya” zadacha nerazreshima”, Matem.sb., 186:4 (1995), 47–60 | MR | Zbl

[13] Sharapov T. F., “O rezolvente mnogomernykh operatorov s chastoi smenoi kraevykh uslovii v sluchae usrednennogo usloviya Dirikhle”, Matem. sb., 205:10 (2014), 125–160 | DOI | MR | Zbl

[14] Borisov D. I., Sharapov T. F., “O rezolvente mnogomernykh operatorov s chastoi smenoi kraevykh uslovii v sluchae tretego usrednennogo usloviya”, Problemy matematicheskogo analiza, 83, 2015, 3–40

[15] D. Borisov, G. Cardone, “Homogenization of the planar waveguide with frequently alternating boundary conditions”, J. Phys. A, 42:36 (2009), id 365205, 21 pp. | DOI | MR | Zbl

[16] D. Borisov, R. Bunoiu, G. Cardone, “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. H. Poincaré, 11:8 (2010), 1591–1627 | DOI | MR | Zbl

[17] D. Borisov, R. Bunoiu, G. Cardone, “Homogenization and asymptotics for a waveguide with an infinite number of closely located small windows”, J. Math. Sc., 176:6 (2011), 774–785 | DOI | MR | Zbl

[18] D. Borisov, R. Bunoiu, G. Cardone, “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics”, Z. Angew. Math. Phys., 64:3 (2013), 439–472 | DOI | MR | Zbl

[19] D. Borisov, G. Cardone, T. Durante, “Norm resolvent convergence for elliptic operators in domain with perforation along curve”, C. R. Math., 352:9 (2014), 679–683 | DOI | MR | Zbl

[20] D. Borisov, G. Cardone, T. Durante, “Homogenization and norm resolvent convergence for elliptic operators in a strip perforated along a curve”, Proc. Royal Soc. Edinburgh, Sec. A Math. (to appear)

[21] Belyaev A. G., Pyatnitskii A. L., Chechkin G. A., “Asimptoticheskoe povedenie resheniya kraevoi zadachi v perforirovannoi oblasti s ostsilliruyuschei granitsei”, Sib. matem. zhurn., 39:4 (1998), 730–754 | MR | Zbl

[22] Belyaev A. G., Pyatnitskii A. L., Chechkin G. A., “Usrednenie v perforirovannoi oblasti s ostsilliruyuschim tretim kraevym usloviem”, Matem. sb., 192:7 (2001), 3–20 | DOI | MR | Zbl

[23] Gadylshin R. R., “Asimptotiki sobstvennykh znachenii kraevoi zadachi s bystro ostsilliruyuschimi granichnymi usloviyami”, Diff. uravn., 35:4 (1999), 540–551 | MR | Zbl

[24] Borisov D. I., Gadylshin R. R., “O spektre laplasiana s chasto menyayuschimsya tipom granichnykh uslovii”, Teor. mat. fiz., 118:3 (1999), 347–353 | DOI | MR | Zbl

[25] Chechkin G. A., “Asimptoticheskoe razlozhenie resheniya kraevoi zadachi s bystro menyayuschimsya tipom granichnykh uslovii”, Tr. sem. im. I. G. Petrovskogo, 19, 1996, 323–337 | MR | Zbl

[26] D. Borisov, “On a model boundary value problem for Laplacian with frequently alternating type of boundary condition”, Asympt. Anal., 35:1 (2003), 1–26 | MR | Zbl

[27] Borisov D. I., “O kraevoi zadache v tsilindre s chastoi smenoi tipa granichnykh uslovii”, Matem. sb., 193:7 (2002), 37–68 | DOI | MR | Zbl

[28] Kato T., Teoriya vozmuschenii lineinykh operatorov, Izd-vo Mir, M., 1972, 739 pp. | MR

[29] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 391 pp. | MR

[30] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | MR | Zbl

[31] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 407 pp. | MR

[32] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[33] Nikiforov A. F., Suslov S. K., Uvarov V. B., Klassicheskie ortogonalnye polinimy diskretnoi peremennoi, Nauka, M., 1985, 215 pp. | MR

[34] Gadylshin R. R., “Asimptotika sobstvennogo znacheniya singulyarno vozmuschennoi ellipticheskoi zadachi s malym parametrom v granichnykh usloviyakh”, Diff. uravn., 22:4 (1986), 640–652 | MR | Zbl