Uniqueness of the renormalized solutions to the Cauchy problem for an anisotropic parabolic equation
Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 44-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Cauchy problem for a certain class of anisotropic parabolic second-order equations with double non-power nonlinearities. The equation contains an “inhomogeneity” in the form of a non-divergent term depending on the sought function and spatial variables. Non-linearities are characterized by $N$-functions, for which $Delta_2$-condition is not imposed. The uniqueness of renormalized solutions in Sobolev–Orlich spases is proved by the S. N. Kruzhkov method of doubling the variables.
Keywords: renormalized solution, non-power nonlinearities, $N$-functions, uniqueness of solution.
Mots-clés : anisotropic parabolic equation
@article{UFA_2016_8_2_a4,
     author = {F. Kh. Mukminov},
     title = {Uniqueness of the renormalized solutions to the {Cauchy} problem for an anisotropic parabolic equation},
     journal = {Ufa mathematical journal},
     pages = {44--57},
     year = {2016},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a4/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
TI  - Uniqueness of the renormalized solutions to the Cauchy problem for an anisotropic parabolic equation
JO  - Ufa mathematical journal
PY  - 2016
SP  - 44
EP  - 57
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a4/
LA  - en
ID  - UFA_2016_8_2_a4
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%T Uniqueness of the renormalized solutions to the Cauchy problem for an anisotropic parabolic equation
%J Ufa mathematical journal
%D 2016
%P 44-57
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a4/
%G en
%F UFA_2016_8_2_a4
F. Kh. Mukminov. Uniqueness of the renormalized solutions to the Cauchy problem for an anisotropic parabolic equation. Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 44-57. http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a4/

[1] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Gos. izdatelstvo fiz.-mat. lit.-ry, Moskva, 1958, 268 pp. | MR

[2] P. A. Raviart, “Sur la resolution de certaines equations paraboliques non lineaires”, J. Funct. Anal., 5 (1970), 209–328 | DOI | MR

[3] A. Bamberger, “Etude d'une equation doublement non lineaire”, J. Funct. Anal., 24 (1977), 148–155 | DOI | MR | Zbl

[4] H. W. Alt, S. Luckhaus, “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183 (1983), 311–341 | DOI | MR | Zbl

[5] Ivanov A. V., Mkrtychyan P. Z., Yager V., “Suschestvovanie i edinstvennost regulyarnogo resheniya pervoi nachalno-kraevoi zadachi dlya nekotorogo klassa dvazhdy nelineinykh parabolicheskikh uravnenii”, Zapiski nauchnykh seminarov POMI, 213, 1994, 48–65 | MR | Zbl

[6] Mkrtychyan P. Z., “O edinstvennosti resheniya vtoroi nachalno-kraevoi zadachi dlya uravneniya politropicheskoi nenyutonovskoi filtratsii”, Zapiski nauchnykh seminarov POMI, 200, 1992, 110–117 | MR | Zbl

[7] F. Otto, “$L^1$-Contraction and uniqueness for quasilinear elliptic-parabolic equations”, J. of Differenutial Equations, 131 (1996), 20–38 | DOI | MR | Zbl

[8] Ph. Benilan, L. Boccardo, Th. Galluet, M. Pierre, J. L. Vazquez, “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 22:2 (1995), 241–273 | MR | Zbl

[9] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81(123):2 (1970), 228–255 | MR | Zbl

[10] R. J. DiPerna, P.-L. Lions, “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. of Math., 130 (1989), 321–366 | DOI | MR | Zbl

[11] D. Blanchard, F. Murat, “Renormalised solutions of nonlinear parabolic problems with $L^1$ data: existence and uniqueness”, Proceedings of the Royal Society of Edinburgh A, 127 (1997), 1137–1152 | DOI | MR | Zbl

[12] A. Prignet, “Existence and uniqueness of entropy solutions of parabolic problems with $L^1$ data”, Nonlinear Analysis Th. Math. Appl., 28 (1997), 1943–1954 | DOI | MR | Zbl

[13] J. Carrillo, P. Wittbold, “Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems”, J. Differential Equations, 156 (1999), 93–121 | DOI | MR | Zbl

[14] Antontsev S. N., Shmarev S. I., “Suschestvovanie i edinstvennost reshenii vyrozhdayuschikhsya parabolicheskikh uravnenii s peremennymi pokazatelyami nelineinosti”, Fundament. i prikl. matem., 12:4 (2006), 3–19 | MR | Zbl

[15] H. Redwane, “Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities”, Rendiconti di Matematica, Serie VII (Roma), 28 (2008), 189–200 | MR | Zbl

[16] H. Redwane, “Existence results for a class of nonlinear parabolic equations in Orlicz spaces”, Electronic Journal of Qualitative Theory of Differential Equations, 2010, 2, 19 pp. http://www.math.u-szeged.hu/ejqtde/ | MR | Zbl

[17] Chao Zhang, Shulin Zhou, “Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L_1$ data”, J. Differential Equations, 248 (2010), 1376–1400 | DOI | MR | Zbl

[18] M. Bendahmane, P. Wittbold, A. Zimmermann, “Renormalized solutions for a nonlinear parabolic equation with variable exponents and $L_1$ data”, J. Differential Equations, 249 (2010), 1483–1515 | DOI | MR | Zbl

[19] Andriyanova E. R., “Otsenki skorosti ubyvaniya resheniya parabolicheskogo uravneniya s nestepennymi nelineinostyami”, Ufimsk. matem. zhurn., 6:2 (2014), 3–25 | MR

[20] Andriyanova E. R., Mukminov F. Kh., “Suschestvovanie resheniya parabolicheskogo uravneniya s nestepennymi nelineinostyami”, Ufimsk. matem. zhurn., 6:4 (2014), 32–49 | MR

[21] Kozhevnikova L. M., Leontev A. A., “Ubyvanie resheniya anizotropnogo parabolicheskogo uravneniya s dvoinoi nelineinostyu v neogranichennykh oblastyakh”, Ufimsk. matem. zhurn., 5:1 (2013), 63–82 | MR

[22] Kozhevnikova L. M., Khadzhi A. A., “Suschestvovanie reshenii anizotropnykh ellipticheskikh uravnenii s nestepennymi nelineinostyami v neogranichennykh oblastyakh”, Matem. sb., 206:8 (2015), 99–126 | DOI | MR | Zbl

[23] Korolev A. G., “Teoremy vlozheniya anizotropnykh prostranstv Soboleva–Orlicha”, Vestn. Moskov. un.-ta, 1983, no. 4, 32–36