Uniqueness of the renormalized solutions to the Cauchy problem for an anisotropic parabolic equation
Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 44-57
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Cauchy problem for a certain class of anisotropic parabolic second-order equations with double non-power nonlinearities. The equation contains an “inhomogeneity” in the form of a non-divergent term depending on the sought function and spatial variables. Non-linearities are characterized by $N$-functions, for which $Delta_2$-condition is not imposed. The uniqueness of renormalized solutions in Sobolev–Orlich spases is proved by the S. N. Kruzhkov method of doubling the variables.
Keywords:
renormalized solution, non-power nonlinearities, $N$-functions, uniqueness of solution.
Mots-clés : anisotropic parabolic equation
Mots-clés : anisotropic parabolic equation
@article{UFA_2016_8_2_a4,
author = {F. Kh. Mukminov},
title = {Uniqueness of the renormalized solutions to the {Cauchy} problem for an anisotropic parabolic equation},
journal = {Ufa mathematical journal},
pages = {44--57},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a4/}
}
TY - JOUR AU - F. Kh. Mukminov TI - Uniqueness of the renormalized solutions to the Cauchy problem for an anisotropic parabolic equation JO - Ufa mathematical journal PY - 2016 SP - 44 EP - 57 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a4/ LA - en ID - UFA_2016_8_2_a4 ER -
F. Kh. Mukminov. Uniqueness of the renormalized solutions to the Cauchy problem for an anisotropic parabolic equation. Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 44-57. http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a4/