Gradient methods for solving Stokes problem
Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 22-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper we consider gradient type iterative methods for solving the Stokes problems in bounded regions, where the pressure serves as the control; they are obtained by reducing the problem to that of a variational type. In the differential form the proposed methods are very close to the algorithms in the Uzawa family. We construct consistent finite-difference algorithms and we present their approbation on the sequence of meshes for solving two-dimensional problem with a known analytic solution.
Keywords: Stokes problem, optimal control, gradient method, finite-difference scheme.
@article{UFA_2016_8_2_a2,
     author = {I. I. Golichev and T. R. Sharipov and N. I. Luchnikova},
     title = {Gradient methods for solving {Stokes} problem},
     journal = {Ufa mathematical journal},
     pages = {22--38},
     year = {2016},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a2/}
}
TY  - JOUR
AU  - I. I. Golichev
AU  - T. R. Sharipov
AU  - N. I. Luchnikova
TI  - Gradient methods for solving Stokes problem
JO  - Ufa mathematical journal
PY  - 2016
SP  - 22
EP  - 38
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a2/
LA  - en
ID  - UFA_2016_8_2_a2
ER  - 
%0 Journal Article
%A I. I. Golichev
%A T. R. Sharipov
%A N. I. Luchnikova
%T Gradient methods for solving Stokes problem
%J Ufa mathematical journal
%D 2016
%P 22-38
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a2/
%G en
%F UFA_2016_8_2_a2
I. I. Golichev; T. R. Sharipov; N. I. Luchnikova. Gradient methods for solving Stokes problem. Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 22-38. http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a2/

[1] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1970 | MR

[2] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR

[3] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[4] V. I. Agoshkov, C. Bardos, S. N. Bideev, Solution of the Stokes problem as an inverse problem, Preprint No 9935, Centre Math. Leuers Applic. E.N.S. de Cachan, Cachan, 1999

[5] Paltsev B. V., Solovev M. B., Chechel I. I., “O razvitii iteratsionnykh metodov s rasschepleniem granichnykh uslovii resheniya kraevykh i nachalno-kraevykh zadach dlya linearizovannykh i nelineinoi sistem Nave–Stoksa”, ZhVMiMF, 51:1 (2011), 74–95 | MR | Zbl

[6] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[7] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[8] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1973 | MR

[9] Ladyzhenskaya O. A., “O svyazi zadachi Stoksa i razlozhenii prostranstv $W_2^1$ i $W_2^{(-1)}$”, Algebra i analiz, 13:4 (2001), 119–133 | MR | Zbl

[10] Golichev I. I., “Modifitsirovannyi gradientnyi metod naiskoreishego spuska resheniya linearizovannoi zadachi dlya nestatsionarnykh uravnenii Nave–Stoksa”, Ufimskii matematicheskii zhurnal, 5:4 (2013), 60–76 | MR

[11] A. G. Churbanov, A. N. Pavlov, P. N. Vabishchevich, “Operator-splitting methods for the incompressible Navier–Stokes equations on non-staggered grids. Part 1: first-order schemes”, International Jornal for Numerical methods in fluids, 21 (1995), 617–640 | DOI | MR | Zbl

[12] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR