Gradient methods for solving Stokes problem
Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 22-38

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we consider gradient type iterative methods for solving the Stokes problems in bounded regions, where the pressure serves as the control; they are obtained by reducing the problem to that of a variational type. In the differential form the proposed methods are very close to the algorithms in the Uzawa family. We construct consistent finite-difference algorithms and we present their approbation on the sequence of meshes for solving two-dimensional problem with a known analytic solution.
Keywords: Stokes problem, optimal control, gradient method, finite-difference scheme.
@article{UFA_2016_8_2_a2,
     author = {I. I. Golichev and T. R. Sharipov and N. I. Luchnikova},
     title = {Gradient methods for solving {Stokes} problem},
     journal = {Ufa mathematical journal},
     pages = {22--38},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a2/}
}
TY  - JOUR
AU  - I. I. Golichev
AU  - T. R. Sharipov
AU  - N. I. Luchnikova
TI  - Gradient methods for solving Stokes problem
JO  - Ufa mathematical journal
PY  - 2016
SP  - 22
EP  - 38
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a2/
LA  - en
ID  - UFA_2016_8_2_a2
ER  - 
%0 Journal Article
%A I. I. Golichev
%A T. R. Sharipov
%A N. I. Luchnikova
%T Gradient methods for solving Stokes problem
%J Ufa mathematical journal
%D 2016
%P 22-38
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a2/
%G en
%F UFA_2016_8_2_a2
I. I. Golichev; T. R. Sharipov; N. I. Luchnikova. Gradient methods for solving Stokes problem. Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 22-38. http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a2/