On the probability of the event: in $n$ generalized allocation schemes the volume of each cell does not exceed $r$
Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 14-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider $n$ identical generalized schemes of allocating particles in cells. We study the probability of the event: for each generalized allocation scheme, there are at most $r$ particles in each cell, where $r$ is a given number. We obtain an asymptotic estimate for this probability and we consider the application of the obtained results to an antinoise coding.
Keywords: generalized allocation scheme, Cauchy integral, Hamming code.
@article{UFA_2016_8_2_a1,
     author = {A. I. Afonina and I. R. Kayumov and A. N. Chuprunov},
     title = {On the probability of the event: in~$n$ generalized allocation schemes the volume of each cell does not exceed~$r$},
     journal = {Ufa mathematical journal},
     pages = {14--21},
     year = {2016},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a1/}
}
TY  - JOUR
AU  - A. I. Afonina
AU  - I. R. Kayumov
AU  - A. N. Chuprunov
TI  - On the probability of the event: in $n$ generalized allocation schemes the volume of each cell does not exceed $r$
JO  - Ufa mathematical journal
PY  - 2016
SP  - 14
EP  - 21
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a1/
LA  - en
ID  - UFA_2016_8_2_a1
ER  - 
%0 Journal Article
%A A. I. Afonina
%A I. R. Kayumov
%A A. N. Chuprunov
%T On the probability of the event: in $n$ generalized allocation schemes the volume of each cell does not exceed $r$
%J Ufa mathematical journal
%D 2016
%P 14-21
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a1/
%G en
%F UFA_2016_8_2_a1
A. I. Afonina; I. R. Kayumov; A. N. Chuprunov. On the probability of the event: in $n$ generalized allocation schemes the volume of each cell does not exceed $r$. Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 14-21. http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a1/

[1] Kolchin V. F., “Odin klass predelnykh teorem dlya uslovnykh raspredelenii”, Lit. matem. sb., 8:1 (1968), 53–63 | MR | Zbl

[2] Kolchin V. F., Sluchainye grafy, Fizmatgiz, M., 2000, 256 pp. | MR

[3] Timashev A. N., Asimptoticheskie razlozheniya v veroyatnostnoi kombinatorike, Nauchnoe izdatelstvo TVP, M., 2011, 312 pp.

[4] Timashev A. N., Obobschennaya skhema razmescheniya v zadachakh veroyatnostnoi kombinatoriki, Izdatelskii dom “Akademiya”, M., 2011, 268 pp.

[5] Timashev A. N., Bolshie ukloneniya v veroyatnostnoi kombinatorike, Izdatelskii dom “Akademiya”, M., 2011

[6] Pavlov Yu. L., Sluchainye lesa, Karelskii nauchnyi tsentr RAN, Petrozavodsk, 1996, 259 pp.

[7] Kolchin A. V., “Predelnye teoremy dlya obobschennoi skhemy razmescheniya”, Diskret. matem., 15:4 (2003), 148–157 | DOI | MR | Zbl

[8] Kolchin A. V., Kolchin V. F., “O perekhode raaspredelenii summ nezavisimykh odinakovo raspredelennykh sluchainykh velichin s odnoi reshetki na druguyu v obobschennoi skheme razmescheniya”, Diskret. matem., 18:4 (2006), 113–127 | DOI | MR | Zbl

[9] Kolchin A. V., Kolchin V. F., “Perekhod s odnoi reshetki na druguyu raspredelenii summ sluchainykh velichin, vstrechayuschikhsya v obobschennoi skheme razmescheniya”, Diskret. matem., 19:3 (2007), 15–21 | DOI | MR | Zbl

[10] Novikov F. A., Diskretnaya matematika dlya programmistov, Piter, Sankt-Peterburg, 2004, 364 pp.

[11] F. G. Avkhadiev, A. N. Chuprunov, “The probability of a successful allocation of ball groups by boxes”, Lobachevskii J. Math., 25 (2007), 3–7 | MR | Zbl

[12] Avkhadiev F. G., Kayumov I. R., Chuprunov A. N., “Issledovanie veroyatnosti uspeshnogo razmescheniya chastits po yacheikam metodami kompleksnogo analiza”, Trudy Matem. Tsentra im. N. I. Lobachevskogo, 19, 2003, 6–7 | MR

[13] Kayumov I. R., Chuprunov A. N., “O veroyatnosti uspeshnogo razmescheniya chastits po yacheikam (obschii sluchai)”, Fundament. i prikl. matem., 18:5 (2013), 119–128 | MR

[14] Chuprunov A. N., Khamdeev B. I., “O veroyatnosti ispravleniya oshibok pri pomekhoustoichivom kodirovanii, kogda chislo oshibok prinadlezhit nekotoromu konechnomu mnozhestvu”, Inform. i ee primen., 3:3, Veroyatnostno-statisticheskie metody i zadachi informatiki i informatsionnykh tekhnologii (2009), 52–59

[15] Chuprunov A. N., Khamdeev B. I., “O veroyatnosti ispravleniya oshibok pri pomekhoustoichivom kodirovanii, kogda chislo oshibok – sluchainoe mnozhestvo”, Izv. vuzov. Matem., 2010, no. 8, 81–88 | MR | Zbl

[16] Chuprunov A. N., Khamdeev B. I.,, “O veroyatnosti ispravleniya oshibok pri pomekhoustoichivom kodirovanii, esli chislo oshibok sluchaino”, Diskret. matem., 22:2 (2010), 41–50 | DOI | MR | Zbl

[17] E. V. Khvorostyanskaya, Y. L. Pavlov, “Limit distributionsof the maximum filling ofcellsin ont allocation scheme”, European researcher, 76:1–6 (2014), 1019–1027