On the probability of the event: in~$n$ generalized allocation schemes the volume of each cell does not exceed~$r$
Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 14-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $n$ identical generalized schemes of allocating particles in cells. We study the probability of the event: for each generalized allocation scheme, there are at most $r$ particles in each cell, where $r$ is a given number. We obtain an asymptotic estimate for this probability and we consider the application of the obtained results to an antinoise coding.
Keywords: generalized allocation scheme, Cauchy integral, Hamming code.
@article{UFA_2016_8_2_a1,
     author = {A. I. Afonina and I. R. Kayumov and A. N. Chuprunov},
     title = {On the probability of the event: in~$n$ generalized allocation schemes the volume of each cell does not exceed~$r$},
     journal = {Ufa mathematical journal},
     pages = {14--21},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a1/}
}
TY  - JOUR
AU  - A. I. Afonina
AU  - I. R. Kayumov
AU  - A. N. Chuprunov
TI  - On the probability of the event: in~$n$ generalized allocation schemes the volume of each cell does not exceed~$r$
JO  - Ufa mathematical journal
PY  - 2016
SP  - 14
EP  - 21
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a1/
LA  - en
ID  - UFA_2016_8_2_a1
ER  - 
%0 Journal Article
%A A. I. Afonina
%A I. R. Kayumov
%A A. N. Chuprunov
%T On the probability of the event: in~$n$ generalized allocation schemes the volume of each cell does not exceed~$r$
%J Ufa mathematical journal
%D 2016
%P 14-21
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a1/
%G en
%F UFA_2016_8_2_a1
A. I. Afonina; I. R. Kayumov; A. N. Chuprunov. On the probability of the event: in~$n$ generalized allocation schemes the volume of each cell does not exceed~$r$. Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 14-21. http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a1/