To the solution of a boundary value problem with a parameter for an ordinary differential equations
Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method for solving a boundary value problem with a parameter under the presence of phase and integral constraints. We obtain the necessary and sufficient conditions for the solvability of the boundary value problem with a parameter for ordinary differential equations. A method for constructing the solution to the boundary value problem with a parameter and constraints is developed by constructing minimizing sequences. The base of the proposed method for solving the boundary value problem is the immersion principle. The immersion principle is created by finding the general solution for a class of the first kind Fredholm integral equations. As an example, the solution of the Sturm–Liouville problem for a parameter value in a prescribed interval is given.
Keywords: principle, optimization problem, minimizing sequences, integral equation
Mots-clés : Sturm–Liouville problem.
@article{UFA_2016_8_2_a0,
     author = {S. A. Aisagaliev and Zh. Kh. Zhunussova},
     title = {To the solution of a~boundary value problem with a~parameter for an ordinary differential equations},
     journal = {Ufa mathematical journal},
     pages = {3--13},
     year = {2016},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a0/}
}
TY  - JOUR
AU  - S. A. Aisagaliev
AU  - Zh. Kh. Zhunussova
TI  - To the solution of a boundary value problem with a parameter for an ordinary differential equations
JO  - Ufa mathematical journal
PY  - 2016
SP  - 3
EP  - 13
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a0/
LA  - en
ID  - UFA_2016_8_2_a0
ER  - 
%0 Journal Article
%A S. A. Aisagaliev
%A Zh. Kh. Zhunussova
%T To the solution of a boundary value problem with a parameter for an ordinary differential equations
%J Ufa mathematical journal
%D 2016
%P 3-13
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a0/
%G en
%F UFA_2016_8_2_a0
S. A. Aisagaliev; Zh. Kh. Zhunussova. To the solution of a boundary value problem with a parameter for an ordinary differential equations. Ufa mathematical journal, Tome 8 (2016) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/UFA_2016_8_2_a0/

[1] Smirnov V. I., Kurs vysshei matematiki, v. 4, Ch. II, 6-e izd., Nauka, M., 1981, 550 pp.

[2] Tikhonov A. N., Vasileva A. B., Svetnikov A. G., Differentsialnye uravneniya, Nauka, M., 1985, 231 pp. | MR

[3] Klokov Yu. A., “O nekotorykh kraevykh zadachakh dlya sistem dvukh uravnenii vtorogo poryadka”, Differentsialnye uravneniya, 48:10 (2012), 1368–1373 | MR | Zbl

[4] Kostomarov D. P., Sheika B. A., “Zadacha o kratnykh sobstvennykh i polozhitelnykh sobstvennykh funktsiyakh dlya odnomernogo kvazilineinogo uravneniya vtorogo poryadka”, Differentsialnye uravneniya, 48:8 (2012), 1096–1104 | MR | Zbl

[5] Makin A. S., Tompson G. V., “O razlozheniyakh po sobstvennym funktsiyam nelineinogo operatora Shturma–Liuvillya s kraevymi uloviyami zavisyaschimi ot spektralnogo parametra”, Differentsialnye uravneniya, 48:2 (2012), 171–182 | MR | Zbl

[6] Aisagaliev S. A., “Upravlyaemost nekotoroi sistemy differentsialnykh uravnenii”, Differentsialnye uravnniya, 27:9 (1991), 1475–1486 | MR

[7] Aisagaliev S. A., “Obschee reshenie odnogo klassa integralnykh uravnenii”, Matematicheskii zhurnal, 5:14(18) (2005), 3–10 | MR

[8] Aisagaliev S. A., Belogurov A. P., “Upralyaemost i bystrodeistvie protsessa, opisyvaemogo parabolicheskim uravneniem s ogranichennym upravleniem”, Sibirskii matematicheskii zhurnal, 53:1, yanvar–fevral (2011), 20–37 | MR

[9] Aisagaliev S. A., Kabidoldanova A. A., “Ob optimalnom upravlenii lineinymi sistemami s lineinym kriteriem kachestva i ogranicheniyami”, Differentsialnye uravneniya, 48:6 (2012), 826–838 | MR | Zbl

[10] Aisagaliev S. A., Kabidoldanova A. A., Optimalnoe upravlenie dinamicheskikh sistem, Palmarium Academic Publishing, Germaniya, 2012, 288 pp.

[11] Aisagaliev S. A., Kalimoldaev M. N., Zhunusova Zh. Kh., “Printsip pogruzheniya dlya kraevykh zadach obyknovennykh differentsialnykh uravnenii”, Matematicheskii zhurnal, 12:2(44) (2012), 5–22

[12] Aisagaliev S. A., Kalimoldaev M. N., Pozdeeva E. M., “K kraevoi zadache obyknovennykh differentsialnykh uravnenii”, Vestnik KazNU, ser. mat., mekh., inf., 2012, no. 2(76), 5–24