Formula of the regularized trace for perturbation in the Schatten–von Neumann of discrete operators
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 104-110
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper we study a formula of the regularized trace for a perturbation in Schatten–von Neumann class ($\sigma_p$, $p\in\mathbb N$) of discrete self-adjoint operators. We prove that the regularized vanishes after deducting $(p-1)$ terms of perturbation theory if there are no dilating gaps in the spectrum of the unperturbed operator.
Keywords:
perturbation theory, regularized trace, discrete operator, spectrum, resolvent.
@article{UFA_2015_7_4_a9,
author = {Kh. Kh. Murtazin and Z. Yu. Fazullin},
title = {Formula of the regularized trace for perturbation in the {Schatten{\textendash}von} {Neumann} of discrete operators},
journal = {Ufa mathematical journal},
pages = {104--110},
year = {2015},
volume = {7},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a9/}
}
TY - JOUR AU - Kh. Kh. Murtazin AU - Z. Yu. Fazullin TI - Formula of the regularized trace for perturbation in the Schatten–von Neumann of discrete operators JO - Ufa mathematical journal PY - 2015 SP - 104 EP - 110 VL - 7 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a9/ LA - en ID - UFA_2015_7_4_a9 ER -
Kh. Kh. Murtazin; Z. Yu. Fazullin. Formula of the regularized trace for perturbation in the Schatten–von Neumann of discrete operators. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 104-110. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a9/
[1] Krein M. G., “O formule sledov v teorii vozmuschenii”, Matem. sb., 33(75):3 (1953), 597–626 | MR | Zbl
[2] Sadovnichii V. A., Poolskii V. E., “Sledy operatorov s otnositelno kompaktnym vozmuscheniem”, Matem. sb., 193:2 (2002), 129–152 | DOI | MR | Zbl
[3] Murtazin Kh. Kh., Fazullin Z. Yu., “Neyadernye vozmuscheniya diskretnykh operatorov i formuly sledov”, Matem. sb., 196:12 (2005), 123–156 | DOI | MR | Zbl
[4] Danford N., Shvarts Dzh., Lineinye operatory, v. 2, Mir, M., 1966
[5] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, Fizmatlit, M., 1965 | MR
[6] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR