Formula of the regularized trace for perturbation in the Schatten--von Neumann of discrete operators
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 104-110

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we study a formula of the regularized trace for a perturbation in Schatten–von Neumann class ($\sigma_p$, $p\in\mathbb N$) of discrete self-adjoint operators. We prove that the regularized vanishes after deducting $(p-1)$ terms of perturbation theory if there are no dilating gaps in the spectrum of the unperturbed operator.
Keywords: perturbation theory, regularized trace, discrete operator, spectrum, resolvent.
@article{UFA_2015_7_4_a9,
     author = {Kh. Kh. Murtazin and Z. Yu. Fazullin},
     title = {Formula of the regularized trace for perturbation in the {Schatten--von} {Neumann} of discrete operators},
     journal = {Ufa mathematical journal},
     pages = {104--110},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a9/}
}
TY  - JOUR
AU  - Kh. Kh. Murtazin
AU  - Z. Yu. Fazullin
TI  - Formula of the regularized trace for perturbation in the Schatten--von Neumann of discrete operators
JO  - Ufa mathematical journal
PY  - 2015
SP  - 104
EP  - 110
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a9/
LA  - en
ID  - UFA_2015_7_4_a9
ER  - 
%0 Journal Article
%A Kh. Kh. Murtazin
%A Z. Yu. Fazullin
%T Formula of the regularized trace for perturbation in the Schatten--von Neumann of discrete operators
%J Ufa mathematical journal
%D 2015
%P 104-110
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a9/
%G en
%F UFA_2015_7_4_a9
Kh. Kh. Murtazin; Z. Yu. Fazullin. Formula of the regularized trace for perturbation in the Schatten--von Neumann of discrete operators. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 104-110. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a9/