Convolution, Fourier transform and Sobolev spaces generated by non-local Ionkin problem
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 76-87

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, given a second order differential operator $\mathcal B$ subject to non-local boundary conditions, we assign Fourier transform and convolution to this problem. We study the properties of the introduced convolution and describe the class of test functions. We also introduce Sobolev spaces and obtain Plancherel identity related to operator $\mathcal B$.
Keywords: nonlocal boundary condition, test functions, Sobolev space, Plancherel identity, differential operator, Ionkin problem.
Mots-clés : convolution, Fourier transform
@article{UFA_2015_7_4_a6,
     author = {B. E. Kanguzhin and N. E. Tokmagambetov},
     title = {Convolution, {Fourier} transform and {Sobolev} spaces generated by non-local {Ionkin} problem},
     journal = {Ufa mathematical journal},
     pages = {76--87},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a6/}
}
TY  - JOUR
AU  - B. E. Kanguzhin
AU  - N. E. Tokmagambetov
TI  - Convolution, Fourier transform and Sobolev spaces generated by non-local Ionkin problem
JO  - Ufa mathematical journal
PY  - 2015
SP  - 76
EP  - 87
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a6/
LA  - en
ID  - UFA_2015_7_4_a6
ER  - 
%0 Journal Article
%A B. E. Kanguzhin
%A N. E. Tokmagambetov
%T Convolution, Fourier transform and Sobolev spaces generated by non-local Ionkin problem
%J Ufa mathematical journal
%D 2015
%P 76-87
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a6/
%G en
%F UFA_2015_7_4_a6
B. E. Kanguzhin; N. E. Tokmagambetov. Convolution, Fourier transform and Sobolev spaces generated by non-local Ionkin problem. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 76-87. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a6/