Convolution, Fourier transform and Sobolev spaces generated by non-local Ionkin problem
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 76-87
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, given a second order differential operator $\mathcal B$ subject to non-local boundary conditions, we assign Fourier transform and convolution to this problem. We study the properties of the introduced convolution and describe the class of test functions. We also introduce Sobolev spaces and obtain Plancherel identity related to operator $\mathcal B$.
Keywords:
nonlocal boundary condition, test functions, Sobolev space, Plancherel identity, differential operator, Ionkin problem.
Mots-clés : convolution, Fourier transform
Mots-clés : convolution, Fourier transform
@article{UFA_2015_7_4_a6,
author = {B. E. Kanguzhin and N. E. Tokmagambetov},
title = {Convolution, {Fourier} transform and {Sobolev} spaces generated by non-local {Ionkin} problem},
journal = {Ufa mathematical journal},
pages = {76--87},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a6/}
}
TY - JOUR AU - B. E. Kanguzhin AU - N. E. Tokmagambetov TI - Convolution, Fourier transform and Sobolev spaces generated by non-local Ionkin problem JO - Ufa mathematical journal PY - 2015 SP - 76 EP - 87 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a6/ LA - en ID - UFA_2015_7_4_a6 ER -
B. E. Kanguzhin; N. E. Tokmagambetov. Convolution, Fourier transform and Sobolev spaces generated by non-local Ionkin problem. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 76-87. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a6/