Convolution, Fourier transform and Sobolev spaces generated by non-local Ionkin problem
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 76-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, given a second order differential operator $\mathcal B$ subject to non-local boundary conditions, we assign Fourier transform and convolution to this problem. We study the properties of the introduced convolution and describe the class of test functions. We also introduce Sobolev spaces and obtain Plancherel identity related to operator $\mathcal B$.
Keywords: nonlocal boundary condition, test functions, Sobolev space, Plancherel identity, differential operator, Ionkin problem.
Mots-clés : convolution, Fourier transform
@article{UFA_2015_7_4_a6,
     author = {B. E. Kanguzhin and N. E. Tokmagambetov},
     title = {Convolution, {Fourier} transform and {Sobolev} spaces generated by non-local {Ionkin} problem},
     journal = {Ufa mathematical journal},
     pages = {76--87},
     year = {2015},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a6/}
}
TY  - JOUR
AU  - B. E. Kanguzhin
AU  - N. E. Tokmagambetov
TI  - Convolution, Fourier transform and Sobolev spaces generated by non-local Ionkin problem
JO  - Ufa mathematical journal
PY  - 2015
SP  - 76
EP  - 87
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a6/
LA  - en
ID  - UFA_2015_7_4_a6
ER  - 
%0 Journal Article
%A B. E. Kanguzhin
%A N. E. Tokmagambetov
%T Convolution, Fourier transform and Sobolev spaces generated by non-local Ionkin problem
%J Ufa mathematical journal
%D 2015
%P 76-87
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a6/
%G en
%F UFA_2015_7_4_a6
B. E. Kanguzhin; N. E. Tokmagambetov. Convolution, Fourier transform and Sobolev spaces generated by non-local Ionkin problem. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 76-87. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a6/

[1] Kanguzhin B. E., Gani S. N., “Svertki, porozhdaemye differentsialnymi operatorami na otrezke”, Izvestiya NAN RK. Seriya fiz.-mat., 2004, no. 1, 29–33 | MR

[2] Kanguzhin B. E., Nurakhmetov D. B., “Nelokalnye vnutrenne kraevye zadachi differentsialnykh operatorov i nekotorye konstruktsii svyazannye s nimi”, Matematicheskii zhurnal, 12:3 (2012), 92–100

[3] B. Kanguzhin, N. Tokmagambetov, “The Fourier transform and convolutions generated by a differential operator with boundary condition on a segment”, Fourier Analysis: Trends in Mathematics, Birkhäuser Basel AG, Basel, 2014, 235–251 | DOI | MR | Zbl

[4] B. Kanguzhin, N. Tokmagambetov, K. Tulenov, “Pseudo-differential operators generated by a non-local boundary value problem”, Complex Var. Elliptic Equ., 60:1 (2015), 107–117 | DOI | MR | Zbl

[5] M. Ruzhansky, N. Tokmagambetov, “Nonharmonic analysis of boundary value problems”, International Mathematics Research Notices, 2015, 68 pp. | DOI

[6] Ionkin N. I., “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1977), 294–304 | MR | Zbl

[7] Sedletskii A. M., “Biortogonalnye razlozheniya funktsii v ryad eksponent na intervalakh veschestvennoi osi”, Uspekhi mat. nauk, 37:5 (1982), 51–95 | MR | Zbl

[8] A. M. Sedletskii, “Nonharmonic analysis”, J. Math. Sci. (N.Y.), 116:5 (2003), 3551–3619 | DOI | MR | Zbl

[9] Sedletskii A. M., “Negarmonicheskii analiz”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 96, 2006, 106–211 | MR | Zbl