On the orbits of analytic functions with respect to a~Pommiez type operator
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 71-75

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be a simply connected domain in the complex plane containing the origin, $A(\Omega)$ be the Fréchet space of all analytic on $\Omega$ functions. An analytic on $\Omega$ function $g_0$ such that $g_0(0)=1$ defines the Pommiez type operator which acts continuously and linearly in $A(\Omega)$. In this article we describe cyclic elements of the Pommiez type operator in space $A(\Omega)$. Similar results were obtained early for functions $g_0$ having no zeroes in domain $\Omega$.
Keywords: Pommiez operator, analytic function.
Mots-clés : cyclic element
@article{UFA_2015_7_4_a5,
     author = {O. A. Ivanova and S. N. Melikhov},
     title = {On the orbits of analytic functions with respect to {a~Pommiez} type operator},
     journal = {Ufa mathematical journal},
     pages = {71--75},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a5/}
}
TY  - JOUR
AU  - O. A. Ivanova
AU  - S. N. Melikhov
TI  - On the orbits of analytic functions with respect to a~Pommiez type operator
JO  - Ufa mathematical journal
PY  - 2015
SP  - 71
EP  - 75
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a5/
LA  - en
ID  - UFA_2015_7_4_a5
ER  - 
%0 Journal Article
%A O. A. Ivanova
%A S. N. Melikhov
%T On the orbits of analytic functions with respect to a~Pommiez type operator
%J Ufa mathematical journal
%D 2015
%P 71-75
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a5/
%G en
%F UFA_2015_7_4_a5
O. A. Ivanova; S. N. Melikhov. On the orbits of analytic functions with respect to a~Pommiez type operator. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 71-75. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a5/