On the orbits of analytic functions with respect to a Pommiez type operator
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 71-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Omega$ be a simply connected domain in the complex plane containing the origin, $A(\Omega)$ be the Fréchet space of all analytic on $\Omega$ functions. An analytic on $\Omega$ function $g_0$ such that $g_0(0)=1$ defines the Pommiez type operator which acts continuously and linearly in $A(\Omega)$. In this article we describe cyclic elements of the Pommiez type operator in space $A(\Omega)$. Similar results were obtained early for functions $g_0$ having no zeroes in domain $\Omega$.
Keywords: Pommiez operator, analytic function.
Mots-clés : cyclic element
@article{UFA_2015_7_4_a5,
     author = {O. A. Ivanova and S. N. Melikhov},
     title = {On the orbits of analytic functions with respect to {a~Pommiez} type operator},
     journal = {Ufa mathematical journal},
     pages = {71--75},
     year = {2015},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a5/}
}
TY  - JOUR
AU  - O. A. Ivanova
AU  - S. N. Melikhov
TI  - On the orbits of analytic functions with respect to a Pommiez type operator
JO  - Ufa mathematical journal
PY  - 2015
SP  - 71
EP  - 75
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a5/
LA  - en
ID  - UFA_2015_7_4_a5
ER  - 
%0 Journal Article
%A O. A. Ivanova
%A S. N. Melikhov
%T On the orbits of analytic functions with respect to a Pommiez type operator
%J Ufa mathematical journal
%D 2015
%P 71-75
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a5/
%G en
%F UFA_2015_7_4_a5
O. A. Ivanova; S. N. Melikhov. On the orbits of analytic functions with respect to a Pommiez type operator. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 71-75. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a5/

[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 641 pp. | MR

[2] Kazmin Yu. A., “O posledovatelnykh ostatkakh ryada Teilora”, Vestn. MGU. Ser. 1. Matematika, Mekhanika, 1963, no. 5, 35–46 | MR | Zbl

[3] Linchuk N. E., “Predstavlenie kommutantov operatora Pomme i ikh prilozheniya”, Matem. zametki, 44:6 (1988), 794–802 | MR | Zbl

[4] Nagnibida N. I., “Ob odnom klasse operatorov obobschennogo differentsirovaniya v prostranstve analiticheskikh v kruge funktsii”, Teoriya funktsii, funktsionalnyi analiz v ikh prilozheniya, 24, Kharkov, 1975, 98–106 | MR | Zbl

[5] Khaplanov M. G., “O polnote nekotorykh sistem analiticheskikh funktsii”, Uch. zap. Rostovsk. gos. ped. in-ta: Sb statei, 3, Rostov-na-Donu, 1955, 53–58 | Zbl

[6] Z. Binderman, “Functional shifts induced by right invertible operators”, Math. Nachr., 157 (1992), 211–224 | DOI | MR | Zbl

[7] I. N. Dimovski, V. Z. Hristov, “Commutants of the Pommiez operator”, Int. J. Math. and Math. Science, 8 (2005), 1239–1251 | DOI | MR | Zbl

[8] G. Köthe, “Dualität in der Funktionentheorie”, J. Reine Angew. Math., 191 (1953), 30–49 | MR | Zbl

[9] Yu. S. Linchuk, “Cyclical elements of operators which are left-inverses to multiplication by an independent variable”, Methods of Functional Analysis and Topology, 12:4 (2006), 384–388 | MR | Zbl

[10] M. Pommies, “Sur les zéros des reste successifs des séries de Taylor”, Acad. Sci. Univ. Toulouse, 250:7 (1960), 1168–1170 | MR

[11] M. Pommies, “Sur les restes successifs des séries de Taylor”, C. R. Acad. Sci., 250:15 (1960), 2669–2671 | MR

[12] M. Pommies, “Sur les restes et les dérivées des séries de Taylor”, C. R. Acad. Sci., 251:17 (1960), 1707–1709 | MR

[13] M. Pommies, “Sur les différences divisées successives et les restes des séries de Newton généralisées”, Ann. Fac. Sci. Univ. Toulouse, 28 (1964), 101–110 | DOI | MR