On the orbits of analytic functions with respect to a~Pommiez type operator
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 71-75
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Omega$ be a simply connected domain in the complex plane containing the origin, $A(\Omega)$ be the Fréchet space of all analytic on $\Omega$ functions. An analytic on $\Omega$ function $g_0$ such that $g_0(0)=1$ defines the Pommiez type operator which acts continuously and linearly in $A(\Omega)$. In this article we describe cyclic elements of the Pommiez type operator in space $A(\Omega)$. Similar results were obtained early for functions $g_0$ having no zeroes in domain $\Omega$.
Keywords:
Pommiez operator, analytic function.
Mots-clés : cyclic element
Mots-clés : cyclic element
@article{UFA_2015_7_4_a5, author = {O. A. Ivanova and S. N. Melikhov}, title = {On the orbits of analytic functions with respect to {a~Pommiez} type operator}, journal = {Ufa mathematical journal}, pages = {71--75}, publisher = {mathdoc}, volume = {7}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a5/} }
TY - JOUR AU - O. A. Ivanova AU - S. N. Melikhov TI - On the orbits of analytic functions with respect to a~Pommiez type operator JO - Ufa mathematical journal PY - 2015 SP - 71 EP - 75 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a5/ LA - en ID - UFA_2015_7_4_a5 ER -
O. A. Ivanova; S. N. Melikhov. On the orbits of analytic functions with respect to a~Pommiez type operator. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 71-75. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a5/