The exact bounds of lower type magnitude for entire function of order $\rho\in(0,1)$ with zeros of prescribed average densities
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 32-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide exact two-sided estimates for lower type magnitude of entire functions of order $\rho\in(0,1)$. The zeroes of these functions have prescribed upper and lower average densities and are arbitrarily distributed in the complex plane or on a ray. We analyze the obtained results and compare them them with known facts for entire functions of usual type.
Keywords: type and lower type of an entire function, the upper and lower average densities of the sequence of zeroes.
@article{UFA_2015_7_4_a3,
     author = {G. G. Braichev},
     title = {The exact bounds of lower type magnitude for entire function of order $\rho\in(0,1)$ with zeros of prescribed average densities},
     journal = {Ufa mathematical journal},
     pages = {32--57},
     year = {2015},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a3/}
}
TY  - JOUR
AU  - G. G. Braichev
TI  - The exact bounds of lower type magnitude for entire function of order $\rho\in(0,1)$ with zeros of prescribed average densities
JO  - Ufa mathematical journal
PY  - 2015
SP  - 32
EP  - 57
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a3/
LA  - en
ID  - UFA_2015_7_4_a3
ER  - 
%0 Journal Article
%A G. G. Braichev
%T The exact bounds of lower type magnitude for entire function of order $\rho\in(0,1)$ with zeros of prescribed average densities
%J Ufa mathematical journal
%D 2015
%P 32-57
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a3/
%G en
%F UFA_2015_7_4_a3
G. G. Braichev. The exact bounds of lower type magnitude for entire function of order $\rho\in(0,1)$ with zeros of prescribed average densities. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 32-57. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a3/

[1] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[2] A. Pfluger, “Die Wertverteilung und das Verhalten von Betrag und Argument einer speziellen Klasse analytischer Funktionen. I”, Comm. Math. Helv., 11 (1938), 180–213 | DOI

[3] A. Pfluger, “Die Wertverteilung und das Verhalten von Betrag und Argument einer speziellen Klasse analytischer Funktionen. II”, Comm. Math. Helv., 12 (1939), 25–69 | DOI | MR

[4] Khabibullin B. N., “Posledovatelnosti nulei golomorfnykh funktsii, predstavlenie meromorfnykh funktsii. II. Tselye funktsii”, Matem. sb., 200:2 (2009), 129–158 | DOI | MR | Zbl

[5] R. P. Boas, Entire functions, Acad. Press, New-York, 1954 | MR | Zbl

[6] Popov A. Yu., “Razvitie teoremy Valirona–Levina o naimenshem vozmozhnom tipe tseloi funktsii s zadannoi verkhnei $\rho$-plotnostyu kornei”, SMFN, 49, 2013, 132–164

[7] Popov A. Yu., “Naimenshii vozmozhnyi tip pri poryadke $\rho1$ kanonicheskikh proizvedenii s polozhitelnymi nulyami zadannoi verkhnei $\rho$-plotnosti”, Vestnik Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 2005, no. 1, 31–36 | MR | Zbl

[8] R. M. Redheffer, “On even entire functions with zeros having a density”, Trans. Amer. Math. Soc., 77 (1954), 32–61 | DOI | Zbl

[9] Popov A. Yu., “O polnote v prostranstvakh analiticheskikh funktsii sistem eksponent s veschestvennymi pokazatelyami zadannoi verkhnei plotnosti”, Vestnik Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1999, no. 5, 48–52 | Zbl

[10] Braichev G. G., Sherstyukov V. B., “O naimenshem vozmozhnom tipe tselykh funktsii poryadka $\rho\in(0,1)$ s polozhitelnymi nulyami”, Izv. RAN. Ser. matem., 75:1 (2011), 3–28 | DOI | MR | Zbl

[11] Braichev G. G., Vvedenie v teoriyu rosta vypuklykh i tselykh funktsii, Prometei, M., 2005

[12] Braichev G. G., “Naimenshii tip tseloi funktsii poryadka $\rho\in(0,1)$ s polozhitelnymi kornyami zadannykh usrednennykh plotnostei”, Matem. sb., 203:7 (2012), 31–56 | DOI | MR | Zbl

[13] Braichev G. G., “Tochnye otsenki tipa tseloi funktsii poryadka menshe edinitsy s nulyami na luche zadannykh usrednennykh plotnostei”, Dokl. RAN, 445:6 (2012), 615–617 | MR | Zbl

[14] G. G. Braichev, V. B. Sherstyukov, “On an extremal problem related to the completeness of a system of exponentials in the disk”, Asian-European Journal of Math., 1:1 (2008), 15–26 | DOI | MR | Zbl

[15] Braichev G. G., Sherstyukov V. B., “O roste tselykh funktsii s diskretno izmerimymi nulyami”, Matem. zametki, 91:5 (2012), 674–690 | DOI | MR | Zbl

[16] Braichev G. G., “Naimenshii tip tseloi funktsii poryadka $\rho\in(0,1)$ s kornyami zadannykh usrednennykh plotnostei, raspolozhennykh na luchakh ili v ugle”, Matem. sb. (to appear)

[17] Braichev G. G., Sherstyukov V. B., “Svyaz tipov tseloi funktsii konechnogo poryadka s plotnostyami ee nulei”, Sb. trudov XIV Mezhdunarodnoi konf. “Matematika. Ekonomika. Obrazovanie”, Abrau-Dyurso, 2006, 52–55

[18] Azarin V. S., “O regulyarnosti rosta funktsionalov na tselykh funktsiyakh”, Teoriya funktsii, funktsionalnyi analiz i ikh pril., 16, Kharkov, 1972, 109–137 | MR | Zbl

[19] Goldberg A. A., Levin B. Ya., Ostrovskii I. V., “Tselye i meromorfnye funktsii”, Kompleksnyi analiz. Odna peremennaya – 1, Itogi nauki i tekhniki. Ser. Sovrem. probl. matem. Fundam. napravleniya, 85, VINITI, M., 1991, 5–185 | MR | Zbl

[20] Goldberg A. A., “Integral po poluadditivnoi mere i ego prilozhenie k teorii tselykh funktsii. III”, Matem. sb., 65(107):3 (1964), 414–453 | MR | Zbl

[21] Goldberg A. A., “Integral po poluadditivnoi mere i ego prilozhenie k teorii tselykh funktsii. IV”, Matem. sb., 66(108):3 (1965), 411–457 | MR | Zbl

[22] Kondratyuk A. A., “Ob ekstremalnom indikatore tselykh funktsii s polozhitelnymi nulyami”, Sib. matem. zhurn., 11:5 (1970), 1084–1092 | Zbl

[23] Azarin V. S., “Ob ekstremalnykh zadachakh na tselykh funktsiyakh”, Teoriya funktsii, funktsionalnyi analiz i ikh pril., 18, Kharkov, 1973, 18–50 | MR | Zbl

[24] Krasichkov I. F., “Otsenki snizu dlya tselykh funktsii konechnogo poryadka”, Sib. matem. zhurn., 6:4 (1965), 840–861 | MR | Zbl

[25] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[26] Braichev G. G., Sherstyukova O. V., “Naibolshii vozmozhnyi nizhnii tip tseloi funktsii poryadka $\rho\in(0,1)$ s nulyami fiksirovannykh $\rho$-plotnostei”, Matem. zametki, 90:2 (2011), 199–215 | DOI | MR | Zbl

[27] Sherstyukov V. B., “Minimalnoe znachenie tipa tseloi funktsii poryadka menshe edinitsy s nulyami zadannykh plotnostei, lezhaschimi v ugle”, Tezisy dokladov 17 mezhdunarodnoi Saratovskoi zimnei shkoly “Sovremennye problemy teorii funktsii i ikh prilozheniya”, Izd-vo Saratovskogo un-ta, Saratov, 2014, 309–310

[28] Braichev G. G., “Tochnye otsenki tipov tselykh funktsii s nulyami na luchakh”, Matem. zametki, 97:4 (2015), 503–515 | DOI | MR | Zbl

[29] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981

[30] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia of mathematics and its applications, 27, Cambridge University Press, Cambridge, 1987 | MR | Zbl

[31] Braichev G. G., “Tochnye otsenki tipov tseloi funktsii poryadka $\rho\in(0,1)$ s nulyami na luche”, Ufimsk. matem. zhurn., 4:1 (2012), 29–37