On perturbation of a Schrödinger operator on axis by narrow potentials
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 24-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a Schrödinger operator on the axis with two complex-valued potentials depending on two small parameters. One these parameters describes the length of the supports of the potentials, while the other corresponds to the maximal values of the absolute values of the potentials. We obtain the sufficient condition ensuring the emergence of an eigenvalues from the threshold of the essential spectrum. The asymptotics for this eigenvalue is constructed.
Keywords: Schrödinger operator, asymptotics.
Mots-clés : perturbation
@article{UFA_2015_7_4_a2,
     author = {A. R. Bikmetov and V. F. Vil'danova and I. Kh. Khusnullin},
     title = {On perturbation of {a~Schr\"odinger} operator on axis by narrow potentials},
     journal = {Ufa mathematical journal},
     pages = {24--31},
     year = {2015},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a2/}
}
TY  - JOUR
AU  - A. R. Bikmetov
AU  - V. F. Vil'danova
AU  - I. Kh. Khusnullin
TI  - On perturbation of a Schrödinger operator on axis by narrow potentials
JO  - Ufa mathematical journal
PY  - 2015
SP  - 24
EP  - 31
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a2/
LA  - en
ID  - UFA_2015_7_4_a2
ER  - 
%0 Journal Article
%A A. R. Bikmetov
%A V. F. Vil'danova
%A I. Kh. Khusnullin
%T On perturbation of a Schrödinger operator on axis by narrow potentials
%J Ufa mathematical journal
%D 2015
%P 24-31
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a2/
%G en
%F UFA_2015_7_4_a2
A. R. Bikmetov; V. F. Vil'danova; I. Kh. Khusnullin. On perturbation of a Schrödinger operator on axis by narrow potentials. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 24-31. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a2/

[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[2] Borisov D. I., Gadylshin R. R., “O spektre periodicheskogo operatora s malym lokalizovannym vozmuscheniem”, Izvestiya AN. Ser. matem., 72:4 (2008), 37–66 | DOI | MR | Zbl

[3] B. Simon, “The bound state of weakly coupled Schrödinger operators in one and two dimensions”, Ann. Phys., 97 (1976), 279–288 | DOI | Zbl

[4] R. Blankenbecler, M. L. Goldberger, B. Simon, “The bound states of weakly coupled long-range one-dimensional quantum Hamiltonians”, Ann. Phys., 108 (1977), 69–78 | DOI

[5] M. Klaus, “On the bound state of Schrödinger operators in one dimension”, Ann. Phys., 108 (1977), 288–300 | DOI | Zbl

[6] M. Klaus, B. Simon, “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Ann. Phys., 130 (1980), 251–281 | DOI | MR | Zbl

[7] Gadylshin R. R., “O lokalnykh vozmuscheniyakh operatora Shrëdingera na osi”, Teor. i matem. fizika, 132:1 (2002), 97–104 | DOI | MR | Zbl

[8] Gadylshin R. R., Khusnullin I. Kh., “Operator Shredingera na osi s potentsialami, zavisyaschimi ot dvukh parametrov”, Algebra i analiz, 22:6 (2010), 50–66 | MR | Zbl

[9] Gadylshin R. R., Khusnullin I. Kh., “Vozmuschenie operatora Shredingera uzkim potentsialom”, Ufimskii matematicheskii zhurnal, 3:3 (2011), 55–66 | Zbl

[10] Khusnullin I. Kh., “Vozmuschennaya kraevaya zadacha na sobstvennye znacheniya dlya operatora Shredingera na otrezke”, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 679–698 | MR | Zbl

[11] Borisov D. I., Karimov R. Kh., Sharapov T. F., “Otsenka nachalnykh masshtabov dlya volnovodov s nekotorymi sluchainymi singulyarnymi potentsialami”, Ufimskii matematicheskii zhurnal, 7:2 (2015), 35–56