The problem on the minimal type of entire functions of order $\rho\in(0,1)$ with positive zeroes of prescribed densities and step
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 140-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem on the least possible type of entire functions of order $\rho\in(0,1)$, whose zeroes lie on a ray and have prescribed densities and step. We prove the exactness of the estimate obtained previously by the author for the type of these functions. We provide a detailed justification for the construction of the extremal entire function in this problem.
Keywords: type of an entire function, upper, lower densities and step of sequence of zeroes, extremal problem.
@article{UFA_2015_7_4_a12,
     author = {O. V. Sherstyukova},
     title = {The problem on the minimal type of entire functions of order $\rho\in(0,1)$ with positive zeroes of prescribed densities and step},
     journal = {Ufa mathematical journal},
     pages = {140--148},
     year = {2015},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a12/}
}
TY  - JOUR
AU  - O. V. Sherstyukova
TI  - The problem on the minimal type of entire functions of order $\rho\in(0,1)$ with positive zeroes of prescribed densities and step
JO  - Ufa mathematical journal
PY  - 2015
SP  - 140
EP  - 148
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a12/
LA  - en
ID  - UFA_2015_7_4_a12
ER  - 
%0 Journal Article
%A O. V. Sherstyukova
%T The problem on the minimal type of entire functions of order $\rho\in(0,1)$ with positive zeroes of prescribed densities and step
%J Ufa mathematical journal
%D 2015
%P 140-148
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a12/
%G en
%F UFA_2015_7_4_a12
O. V. Sherstyukova. The problem on the minimal type of entire functions of order $\rho\in(0,1)$ with positive zeroes of prescribed densities and step. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 140-148. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a12/

[1] Sherstyukova O. V., “Ob ekstremalnom tipe tseloi funktsii poryadka menshe edinitsy s nulyami fiksirovannykh plotnostei i shaga”, Ufimsk. matem. zhurn., 4:1 (2012), 161–165

[2] Braichev G. G., Sherstyukov V. B., “O naimenshem vozmozhnom tipe tselykh funktsii poryadka ${\rho\in(0,1)}$ s polozhitelnymi nulyami”, Izv. RAN. Ser. matem., 75:1 (2011), 3–28 | DOI | MR | Zbl

[3] Popov A. Yu., “Naimenshii vozmozhnyi tip pri poryadke $\rho1$ kanonicheskikh proizvedenii s polozhitelnymi nulyami zadannoi verkhnei $\rho$-plotnosti”, Vestnik Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 2005, no. 1, 31–36 | MR | Zbl

[4] Sherstyukova O. V., “O vliyanii shaga posledovatelnosti nulei tseloi funktsii poryadka menshe edinitsy na velichinu ee tipa”, Nauka v vuzakh: matematika, informatika, fizika, obrazovanie, MPGU, M., 2010, 192–195

[5] Sherstyukova O. V., “O naimenshem tipe tselykh funktsii poryadka $\rho\in(0,1)$ s nulyami na luche”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:4 (2015), 433–441