On a class of inner functions in a half-space
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 127-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we obtain necessary and sufficient conditions for the weight vector function, under which a given inner function is weakly invertible in the weighted functions of holomorphic functions in a tubular domain.
Keywords: weak invertibility, weighted spaces, tubular domain.
@article{UFA_2015_7_4_a11,
     author = {F. A. Shamoyan},
     title = {On a~class of inner functions in a~half-space},
     journal = {Ufa mathematical journal},
     pages = {127--139},
     year = {2015},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a11/}
}
TY  - JOUR
AU  - F. A. Shamoyan
TI  - On a class of inner functions in a half-space
JO  - Ufa mathematical journal
PY  - 2015
SP  - 127
EP  - 139
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a11/
LA  - en
ID  - UFA_2015_7_4_a11
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%T On a class of inner functions in a half-space
%J Ufa mathematical journal
%D 2015
%P 127-139
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a11/
%G en
%F UFA_2015_7_4_a11
F. A. Shamoyan. On a class of inner functions in a half-space. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 127-139. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a11/

[1] N. K. Nikolski, Operators, functions and system: An easy reading, v. 1, Math. Surveys and monograph, 92, Amer. Math. Soc., Providence, RI, 2001, 498 pp.

[2] Keldysh M. V., “Sur l'approximation en moyenne par polynomes les functions d'une variable complexe”, Mat. sb., 16(58):1 (1945), 1–20 | MR | Zbl

[3] A. Beurling, “A critical topology in harmonic analysis on semigroups”, Acta. Math., 112:3–4 (1964), 213–215 | MR

[4] Nikolskii N. K., “Izbrannye zadachi vesovoi approksimatsii i spektralnogo analiza”, Trudy MIAN SSSR im. V. A. Steklova, 120, 1974, 3–272 | MR | Zbl

[5] Gevorkyan I. M., Shamoyan F. A., “O slaboi obratimosti v prostranstvakh analiticheskikh v kruge funktsii, dopuskayuschikh rost vblizi ego granitsy”, DAN Arm.SSR, 82:4 (1986), 156–159 | MR | Zbl

[6] O. El-Fallah, K. Kellay, K. Seip, “Cyclicity of singular inner functions from the corona theorem”, Journal of the institute of Mathematics of Jossieu, 11:6 (2012), 815–824 | DOI | MR | Zbl

[7] Garnet Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR

[8] Shamoyan F. A., “Slabo obratimye elementy v vesovykh anizotropnykh prostranstvakh analiticheskikh v polikruge funktsii”, Mat. sbornik, 193:6 (2002), 143–160 | DOI | MR | Zbl

[9] Dzhrbashyan M. M., “Metricheskie priznaki polnoty sistem polinomov pri vzveshannom priblizhenii”, DAN SSSR, 56:6 (1949), 1034–1040

[10] Mergelyan S. N., “Vesovye priblizheniya mnogochlenami”, Uspekhi mat. nauk, 11:5 (1956), 107–152 | MR | Zbl

[11] Shamoyan F. A., “O slaboi obratimosti v vesovykh prostranstvakh analiticheskikh funktsii”, Izv. RAN, ser. Matem., 60:5 (1996), 191–212 | DOI | MR | Zbl

[12] P. Koosis, The Logarithmic Integral, v. I, Cambridge university Press, 2004

[13] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, 2-oe izd., Nauka, M., 1979 | MR

[14] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974