Sampling sets for the space of holomorphic functions of polynomial growth in a~ball
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a new approach to study sampling sets in the space of holomorphic functions of polynomial growth in a ball in the sense of Horowitz, Korenblum, and Pinchuk (Michigan Math. J., 44:2, 1997). It is based on involving weakly sufficient sets for intermediate inductive limits. By means of this approach we obtain a complete topological description of such sets and, as an application of this description, some new properties of sampling sets of general and special type are established. In particular, the main result of the above mentioned paper on sampling sequences of circles is extended to the multi-dimensional case.
Keywords: sampling sets, weakly sufficient sets, space of holomorphic functions of polynomial growth.
@article{UFA_2015_7_4_a0,
     author = {A. V. Abanin},
     title = {Sampling sets for the space of holomorphic functions of polynomial growth in a~ball},
     journal = {Ufa mathematical journal},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a0/}
}
TY  - JOUR
AU  - A. V. Abanin
TI  - Sampling sets for the space of holomorphic functions of polynomial growth in a~ball
JO  - Ufa mathematical journal
PY  - 2015
SP  - 3
EP  - 14
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a0/
LA  - en
ID  - UFA_2015_7_4_a0
ER  - 
%0 Journal Article
%A A. V. Abanin
%T Sampling sets for the space of holomorphic functions of polynomial growth in a~ball
%J Ufa mathematical journal
%D 2015
%P 3-14
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a0/
%G en
%F UFA_2015_7_4_a0
A. V. Abanin. Sampling sets for the space of holomorphic functions of polynomial growth in a~ball. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 3-14. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a0/