Sampling sets for the space of holomorphic functions of polynomial growth in a ball
Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a new approach to study sampling sets in the space of holomorphic functions of polynomial growth in a ball in the sense of Horowitz, Korenblum, and Pinchuk (Michigan Math. J., 44:2, 1997). It is based on involving weakly sufficient sets for intermediate inductive limits. By means of this approach we obtain a complete topological description of such sets and, as an application of this description, some new properties of sampling sets of general and special type are established. In particular, the main result of the above mentioned paper on sampling sequences of circles is extended to the multi-dimensional case.
Keywords: sampling sets, weakly sufficient sets, space of holomorphic functions of polynomial growth.
@article{UFA_2015_7_4_a0,
     author = {A. V. Abanin},
     title = {Sampling sets for the space of holomorphic functions of polynomial growth in a~ball},
     journal = {Ufa mathematical journal},
     pages = {3--14},
     year = {2015},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a0/}
}
TY  - JOUR
AU  - A. V. Abanin
TI  - Sampling sets for the space of holomorphic functions of polynomial growth in a ball
JO  - Ufa mathematical journal
PY  - 2015
SP  - 3
EP  - 14
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a0/
LA  - en
ID  - UFA_2015_7_4_a0
ER  - 
%0 Journal Article
%A A. V. Abanin
%T Sampling sets for the space of holomorphic functions of polynomial growth in a ball
%J Ufa mathematical journal
%D 2015
%P 3-14
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a0/
%G en
%F UFA_2015_7_4_a0
A. V. Abanin. Sampling sets for the space of holomorphic functions of polynomial growth in a ball. Ufa mathematical journal, Tome 7 (2015) no. 4, pp. 3-14. http://geodesic.mathdoc.fr/item/UFA_2015_7_4_a0/

[1] C. Horowitz, B. Korenblum, B. Pinchuk, “Sampling sequences for $A^{-\infty}$”, Michigan Math. J., 44:2 (1997), 389–398 | DOI | MR | Zbl

[2] L. H. Khoi, P. Thomas, “Weakly sufficient sets for $A^{-\infty}(\mathbb D)$”, Publ. Mat., 42:2 (1998), 435–448 | DOI | MR | Zbl

[3] D. M. Schneider., “Sufficient sets for some spaces of entire functions”, Trans. Amer. Math. Soc., 197 (1974), 161–180 | DOI | MR | Zbl

[4] L. H. Khoi., “Sets of uniqueness, weakly sufficient sets and sampling sets for $A^{-\infty}(\mathbb B)$”, Bull. Korean Math. Soc., 47:5 (2010), 933–950 | DOI | MR | Zbl

[5] J. Bonet, P. Domański., “Sampling sets and sufficient sets for $A^{-\infty}$”, J. Math. Anal. Appl., 277:2 (2003), 651–669 | DOI | MR | Zbl

[6] V. G. Iyer., “On effective sets of points in relation to integral functions”, Trans. Amer. Math. Soc., 42 (1937), 358–365 | DOI | MR

[7] A. V. Abanin, Pham Trong Tien, “Continuation of holomorphic functions and some of its applications”, Studia Math., 200:3 (2010), 279–295 | DOI | MR | Zbl

[8] C. Horowitz, “Zeros of functions in the Bergman spaces”, Duke Math. J., 41 (1974), 693–710 | DOI | MR | Zbl

[9] Abanin A. V., “O nekotorykh priznakakh slaboi dostatochnosti”, Matematicheskie zametki, 40:4 (1986), 442–454 | MR | Zbl

[10] Korobeinik Yu. F., “Induktivnye i proektivnye topologii. Dostatochnye mnozhestva i predstavlyayuschie sistemy”, Izv. AN SSSR. Ser. matem., 50:3 (1986), 539–565 | MR | Zbl

[11] L. Brown, A. Shields, K. Zeller., “On absolutely convergent exponential sums”, Trans. Amer. Math. Soc., 96:1 (1960), 162–183 | DOI | MR | Zbl

[12] L. Ehrenpreis, Fourier analysis in several complex variables, Pure Appl. Math., 17, Wiley-Intersci. Publ., New York, 1970 | MR | Zbl

[13] Napalkov V. V., “O sravnenii topologii v nekotorykh prostranstvakh tselykh funktsii”, Dokl. AN SSSR, 264:4 (1982), 827–830 | MR | Zbl

[14] K. D. Bierstedt, R. Meise, W. H. Summers, “A projective description of weighted inductive limits”, Trans. Amer. Math. Soc., 272 (1982), 107–160 | DOI | MR | Zbl

[15] Abanin A. V., Slabo dostatochnye mnozhestva i absolyutno predstavlyayuschie sistemy, Dis. $\dots$ d-ra fiz.-mat. nauk, Rostov-na-Donu, 1995

[16] Epifanov O. V., “Variatsii slabo dostatochnykh mnozhestv v prostranstvakh analiticheskikh funktsii”, Izv. vuzov. Matematika, 1986, no. 7, 50–56 | MR | Zbl