On spectral properties of Sturm--Liouville operator with matrix potential
Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 84-94
Voir la notice de l'article provenant de la source Math-Net.Ru
In the work we obtain asymptotic estimates for the eigenvalues, eigenvectors and spectral projectors of a Sturm–Liouville operator with a matrix potential subject to quasi-periodic boundary conditions. The matrix potential is formed by functions square summable on the segment $[0,1]$ and the matrix of the means of the functions have simple eigenvalues. We consider also the case when the matrix of the means has a simple structure.
Keywords:
similar operator method, spectrum, linear operators, spectral projectors.
@article{UFA_2015_7_3_a9,
author = {N. B. Uskova},
title = {On spectral properties of {Sturm--Liouville} operator with matrix potential},
journal = {Ufa mathematical journal},
pages = {84--94},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a9/}
}
N. B. Uskova. On spectral properties of Sturm--Liouville operator with matrix potential. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 84-94. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a9/