On spectral properties of Sturm–Liouville operator with matrix potential
Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 84-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we obtain asymptotic estimates for the eigenvalues, eigenvectors and spectral projectors of a Sturm–Liouville operator with a matrix potential subject to quasi-periodic boundary conditions. The matrix potential is formed by functions square summable on the segment $[0,1]$ and the matrix of the means of the functions have simple eigenvalues. We consider also the case when the matrix of the means has a simple structure.
Keywords: similar operator method, spectrum, linear operators, spectral projectors.
@article{UFA_2015_7_3_a9,
     author = {N. B. Uskova},
     title = {On spectral properties of {Sturm{\textendash}Liouville} operator with matrix potential},
     journal = {Ufa mathematical journal},
     pages = {84--94},
     year = {2015},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a9/}
}
TY  - JOUR
AU  - N. B. Uskova
TI  - On spectral properties of Sturm–Liouville operator with matrix potential
JO  - Ufa mathematical journal
PY  - 2015
SP  - 84
EP  - 94
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a9/
LA  - en
ID  - UFA_2015_7_3_a9
ER  - 
%0 Journal Article
%A N. B. Uskova
%T On spectral properties of Sturm–Liouville operator with matrix potential
%J Ufa mathematical journal
%D 2015
%P 84-94
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a9/
%G en
%F UFA_2015_7_3_a9
N. B. Uskova. On spectral properties of Sturm–Liouville operator with matrix potential. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 84-94. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a9/

[1] Veliev O. A., “O nesamosopryazhennykh operatorakh Shturma–Liuvillya s matrichnymi potentsialami”, Matem. zametki, 81:4 (2007), 496–506 | DOI | MR | Zbl

[2] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnye operatory, v. III, Mir, M., 1974, 663 pp.

[3] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. matem. zhurn., 24:1 (1983), 21–39 | MR | Zbl

[4] Baskakov A. G., “Teoriya o rasscheplenii operatora i nekotorye smezhnye voprosy analiticheskoi teorii vozmuschenii”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 435–457 | MR | Zbl

[5] Baskakov A. G., “Spektralnyi analiz vozmuschënnykh nekvazianaliticheskikh i spektralnykh operatorov”, Izv. RAN. Cer. matem., 58:4 (1994), 3–32 | MR | Zbl

[6] Baskakov A. G., Derbushev A. V., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. matem., 75:3 (2011), 3–28 | DOI | MR | Zbl

[7] A. G. Baskakov, I. A. Krishtal, “On completeness of spectral subspaces of linear relations and ordered pairs of linear operators”, J. Math. Anal. and Appl., 2013:407, 157–178 | MR | Zbl

[8] Uskova N. B., “Ob otsenkakh spektralnykh proektorov vozmuschennykh samosopryazhennykh operatorov”, Sib. matem. zhurn., 41:3 (2000), 712–721 | MR | Zbl

[9] Uskova N. B., “O spektre nekotorykh klassov differentsialnykh operatorov”, Differents. uravneniya, 30:2 (1994), 350–352 | MR | Zbl

[10] Polyakov D. M., “Spektralnyi analiz nesamosopryazhennogo operatora chetvertogo poryadka s negladkimi koeffitsientami”, Sib. matem. zhurn., 56:1 (2015), 165–184 | Zbl

[11] Karpikova A. V., “Asimptotika sobstvennykh znachenii operatora Shturma–Liuvillya s periodicheskimi kraevymi usloviyami”, Ufimskii matem. zhurn., 6:3 (2014), 28–34

[12] Azarnova T. V., Uskova N. B., “O preobrazovanii podobiya operatorov”, Vestnik VGU. Ser. Fiz. Matem., 2007, no. 2, 121–126

[13] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[14] Baskakov A. G., Yurgelas V. V., “Indefinitnaya dissipativnost i obratimost lineinykh diferentsialnykh operatorov”, Ukr. matem. zhurn., 41:12 (1989), 1613–1614 | MR

[15] R. Bhatia, P. Rosental, “How and why to solve the operator equation $AX-XB=Y$”, Bull. London. Math., 29 (1997), 1–21 | DOI | MR | Zbl

[16] Baskakov A. G., “Otsenki funktsii Grina i parametrov eksponentsialnoi dikhotomii giperbolicheskoi polugruppy operatorov i lineinykh otnoshenii”, Matem. sb., 206:8 (2015), 23–62 | DOI