Boundary value problem for partial differential equation with fractional Riemann–Liouville derivative
Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 67-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a differential equation involving a fractional order diffusion equations, we study a non-local problem in an unbounded domain where the boundary condition involves a linear combination of generalized operators of a fractional integro-differentiation. For various values of the parameters of these operators by Tricomi method we prove the uniqueness of solution to the considered problem. The existence of solution is obtained in the closed form as a solution to the appropriate equation with fractional derivative of various order.
Keywords: boundary value problem, generalized operator of fractional integro-differentiation, Wright's function, fractional order differential equation.
@article{UFA_2015_7_3_a7,
     author = {O. A. Repin},
     title = {Boundary value problem for partial differential equation with fractional {Riemann{\textendash}Liouville} derivative},
     journal = {Ufa mathematical journal},
     pages = {67--72},
     year = {2015},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a7/}
}
TY  - JOUR
AU  - O. A. Repin
TI  - Boundary value problem for partial differential equation with fractional Riemann–Liouville derivative
JO  - Ufa mathematical journal
PY  - 2015
SP  - 67
EP  - 72
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a7/
LA  - en
ID  - UFA_2015_7_3_a7
ER  - 
%0 Journal Article
%A O. A. Repin
%T Boundary value problem for partial differential equation with fractional Riemann–Liouville derivative
%J Ufa mathematical journal
%D 2015
%P 67-72
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a7/
%G en
%F UFA_2015_7_3_a7
O. A. Repin. Boundary value problem for partial differential equation with fractional Riemann–Liouville derivative. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 67-72. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a7/

[1] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp. | MR

[2] M. Saigo, “A remark on integral operators involving the Gauss hypergeometric function”, Math. Rep. Kyushu Univ., 11:2 (1978), 135–143 | MR | Zbl

[3] Repin O. A., Kraevye zadachi so smescheniem dlya uravnenii giperbolicheskogo i smeshannogo tipov, Saratov. un-t, 1992, 161 pp. | MR

[4] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[5] Nakhusheva Z. A., Nelokalnye zadachi dlya osnovnykh i smeshannogo tipov differentsialnykh uravnenii, Nalchik, 2011, 196 pp.

[6] Kilbas A. A., Repin O. A., “Analog zadachi Bitsadze–Samarskogo dlya smeshannogo uravneniya s drobnoi proizvodnoi”, Differents. uravneniya, 39:5 (2003), 638–644 | MR | Zbl

[7] Kilbas A. A., Repin O. A., “Nelokalnaya zadacha dlya uravneniya smeshannogo tipa s chastnoi proizvodnoi Rimana–Liuvillya i operatorami obobschennogo drobnogo integrirovaniya v kraevom uslovii”, Trudy Instituta matematiki, 12, no. 2, Minsk, 2004, 75–81

[8] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp. | MR

[9] Gekkieva S. Kh., “Analog zadachi Trikomi dlya uravneniya smeshannogo tipa s drobnoi proizvodnoi”, Izv. Kabar.-Balkar. nauchn. tsentra RAN, 2001, no. 2(7), 78–80

[10] Kilbas A. A., Repin O. A., “Zadacha so smescheniem dlya parabolo-giperbolicheskogo uravneniya”, Differents. uravneniya, 34:6 (1998), 799–805 | MR | Zbl

[11] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981, 800 pp. | MR

[12] A. A. Kilbas, H. M. Srivastava, Y. Y. Trujillo, Theory and applications of fractional differential equations, North-Holland. Math. Studies, 204, Amsterdam–Boston–Tokio, 2006, 523 pp. | MR | Zbl

[13] C. Fox, “The asymptotic expansion of generalized hypergeometric functions”, Proc. London Math. Soc. Ser. 2, 27 (1928), 389–400 | DOI | MR | Zbl

[14] C. Fox, “The $G$ and $H$ functions as symmetrical Fourier kernels”, Trans. Amer. Math. Soc., 98 (1961), 395–429 | MR | Zbl

[15] E. M. Wright, “The asymptotic expansion of the generalized hypergeometric function”, J. London Math. Soc., 10 (1935), 286–293 | MR | Zbl

[16] E. M. Wright, “The asymptotic expansion of integral functions defined by Taylor Series”, Philos. Trans. Roy. Soc. London A, 238 (1940), 423–451 | DOI | MR | Zbl

[17] E. M. Wright, “The asymptotic expansion of the generalized hypergeometric function. II”, Proc. London Math. Soc., 46:2 (1940), 389–408 | DOI | MR | Zbl