Distribution of zeroes to generalized Hermite polynomials
Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 54-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotics of the orthogonal polynomial constitute a classic analytic problem. In the paper, we find a distribution of zeroes to generalized Hermite polynomials $H_{m,n}(z)$ as $m=n$, $n\to\infty$, $z=O(\sqrt n)$. These polynomials defined as the Wronskians of classic Hermite polynomials appear in a number of mathematical physics problems as well as in the theory of random matrices. Calculation of asymptotics is based on Riemann–Hilbert problem for Painlevé IV equation which has the solutions $u(z)=-2z +\partial_z\ln H_{m,n+1}(z)/H_{m+1,n}(z)$. In this scaling limit the Riemann-Hilbert problem is solved in elementary functions. As a result, we come to analogs of Plancherel–Rotach formulas for asymptotics of classical Hermite polynomials.
Keywords: generalized Hermite polynomials, distribution of zeroes, Riemann–Hilbert problem, Deift–Zhou method
Mots-clés : Painlevé IV equation, meromorphic solutions, Plancherel–Rotach formulas.
@article{UFA_2015_7_3_a6,
     author = {V. Yu. Novokshenov and A. A. Schelkonogov},
     title = {Distribution of zeroes to generalized {Hermite} polynomials},
     journal = {Ufa mathematical journal},
     pages = {54--66},
     year = {2015},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a6/}
}
TY  - JOUR
AU  - V. Yu. Novokshenov
AU  - A. A. Schelkonogov
TI  - Distribution of zeroes to generalized Hermite polynomials
JO  - Ufa mathematical journal
PY  - 2015
SP  - 54
EP  - 66
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a6/
LA  - en
ID  - UFA_2015_7_3_a6
ER  - 
%0 Journal Article
%A V. Yu. Novokshenov
%A A. A. Schelkonogov
%T Distribution of zeroes to generalized Hermite polynomials
%J Ufa mathematical journal
%D 2015
%P 54-66
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a6/
%G en
%F UFA_2015_7_3_a6
V. Yu. Novokshenov; A. A. Schelkonogov. Distribution of zeroes to generalized Hermite polynomials. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 54-66. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a6/

[1] M. Bertola, T. Bothner, Zeros of large degree Vorob'ev–Yablonski polynomials via a Hankel determinant identity, arXiv: 1401.1408v1

[2] R. J. Buckingham, P. D. Miller, “Large-degree asymptotics of rational Painleve-II functions: noncritical behaviour”, Nonlinearity, 27 (2014), 2498–2578 | DOI | MR

[3] Y. Chen, M. V. Feigin, “Painlevé IV and degenerate Gaussian unitary ensembles”, J. Phys. A: Math. Gen., 39 (2006), 12381–12393 | DOI | MR | Zbl

[4] P. A. Clarkson, “Special Polynomials Associated with Rational Solutions of the Painlevé Equations and Applications to Soliton Equations”, Comp. Methods and Function Theory, 6:2 (2006), 329–401 | DOI | MR | Zbl

[5] P. Deift, Orthogonal polynomials and random matrices: A Riemann–Hilbert approach, Courant Lecture Notes, New York Univ., NY, 1999 | MR

[6] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52:12 (1999), 1491–1552 | 3.0.CO;2-%23 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé Transcendents. The Riemann–Hilbert Approach, Math. Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR

[9] A. Fokas, A. Its, A. Kitaev, “Discrete Painlevé equations and their appearance in quantum gravity”, Comm. Math. Phys., 142:2 (1991), 313–344 | DOI | MR | Zbl

[10] P. J. Forrester, Log-gases and random matrices, London Math. Soc. Monographs, 34, Princeton University Press, 2010 | MR | Zbl

[11] A. A. Kapaev, E. Hubert, “A note on the Lax pairs for Painlevé equations”, J. Phys. A: Math. Gen., 32:46 (1999), 8145–8156 | DOI | MR | Zbl

[12] A. P. Magnus, “Painleve-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials”, J. Comput. Appl. Math., 57 (1995), 215–237 | DOI | MR | Zbl

[13] V. Yu. Novokshenov, A. A. Shchelkonogov, “Double Scaling Limit in the Painlevé IV Equation and Asymptotics of the Okamoto Polynomials”, Advances in the Mathematical Sciences, AMS Translations, 233, 2014, 199–210 | MR | Zbl

[14] M. Plancherel, W. Rotach, “Sur les valeurs asymptotiques des polynomes d'Hermite”, Commentarii Math. Helvetici, 1 (1929), 227–254 | DOI | MR | Zbl

[15] E. B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren der mathematischen Wissenschaften, 317, Springer, 1997 | DOI | MR

[16] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[17] M. Noumi, Y. Yamada, “Symmetries in the fourth Painlevé equation and Okamoto polynomials”, Nagoya Math. J., 153 (1999), 53–86 | MR | Zbl