Preliminary group classification of $(2+1)$-dimensional linear ultraparabolic Kolmogorov–Fokker–Planck equations
Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 38-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We make a preliminary group classification of a class of $(2+1)$-dimensional ultraparabolic equations invariant under low-dimensional solvable Lie algebras. It is shown that there exist one, six and four nonequivalent ultraparabolic equations admitting two-, three-, and four-dimensional solvable Lie algebras, respectively.
Mots-clés : ultraparabolic equation, equivalence transformation, group classification, maximal invariance algebra, solvable Lie algebra.
@article{UFA_2015_7_3_a4,
     author = {V. V. Davydovych},
     title = {Preliminary group classification of $(2+1)$-dimensional linear ultraparabolic {Kolmogorov{\textendash}Fokker{\textendash}Planck} equations},
     journal = {Ufa mathematical journal},
     pages = {38--46},
     year = {2015},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a4/}
}
TY  - JOUR
AU  - V. V. Davydovych
TI  - Preliminary group classification of $(2+1)$-dimensional linear ultraparabolic Kolmogorov–Fokker–Planck equations
JO  - Ufa mathematical journal
PY  - 2015
SP  - 38
EP  - 46
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a4/
LA  - en
ID  - UFA_2015_7_3_a4
ER  - 
%0 Journal Article
%A V. V. Davydovych
%T Preliminary group classification of $(2+1)$-dimensional linear ultraparabolic Kolmogorov–Fokker–Planck equations
%J Ufa mathematical journal
%D 2015
%P 38-46
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a4/
%G en
%F UFA_2015_7_3_a4
V. V. Davydovych. Preliminary group classification of $(2+1)$-dimensional linear ultraparabolic Kolmogorov–Fokker–Planck equations. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 38-46. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a4/

[1] C. W. Gardiner, Handbook of stochastic methods, Springer, Berlin, 1985 | MR

[2] A. N. Kolmogoroff, “Zufällige Bewegungen (Zur Theorie der Brownschen Bewegung)”, Ann. Math., 35:1 (1934), 116–117 | DOI | MR | Zbl

[3] P. Wilmott, S. Howison, J. Dewynne, Option pricing: mathematical models and computation, Oxford financial press, 1993

[4] A. Pascucci, “Kolmogorov equations in physics and in finance”, Prog. Nonlinear Differential Equations Appl., 63 (2005), 353–364 | DOI | MR | Zbl

[5] H. Geman, M. Yor, “Bessel processes, Asian options, and perpetuities”, Math. Fin., 3:4 (1993), 349–375 | DOI | Zbl

[6] W. M. Shtelen, V. I. Stogny, “Symmetry properties of one- and two-dimensional Fokker–Planck equations”, J. Phys. A: Math. Gen., 22:13 (1989), L539 | DOI | MR | Zbl

[7] S. Spichak, V. Stogny, “Symmetry analysis of the Kramers equation”, Rep. Math. Phys., 40:1 (1997), 125–130 | DOI | MR | Zbl

[8] S. V. Spichak, V. I. Stogniy, I. M. Kopas, “Symmetry properties and exact solutions of the linear Kolmogorov equation”, Research Bulletin of NTUU “Kyiv Polytechnic Institute”, 2011, no. 4, 93–97 (in Ukrainian)

[9] S. S. Kovalenko, I. M. Kopas, V. I. Stogniy, “Preliminary group classification of a class of generalized linear Kolmogorov equations”, Research Bulletin of NTUU “Kyiv Polytechnic Institute”, 2013, no. 4, 67–72 (in Ukrainian)

[10] E. Barucci, S. Polidoro, V. Vespri, “Some results on partial differential equations and Asian options”, Math. Models Methods Appl. Sci., 11:3 (2001), 475–497 | DOI | MR | Zbl

[11] R. Z. Zhdanov, V. I. Lahno, “Group classification of heat conductivity equations with a nonlinear source”, J. Phys. A: Math. Gen., 32:42 (1999), 7405 | DOI | MR | Zbl

[12] Lagno V. I., Spichak S. V., Stognii V. I., Simmetriinyi analiz uravnenii evolyutsionnogo tipa, Institut kompyuternykh issledovanii, Izhevsk, 2004, 392 pp.

[13] P. Basarab-Horwath, V. Lahno, R. Zhdanov, “The structure of Lie algebras and the classification problem for partial differential equations”, Acta Applicandae Mathematica, 69:1 (2001), 43–94 | DOI | MR | Zbl

[14] V. Lahno, R. Zhdanov, “Group classification of nonlinear wave equations”, J. Math. Phys., 46:5 (2005), 053301 | DOI | MR | Zbl

[15] R. Zhdanov, V. Lahno, “Group classification of the general second-order evolution equation: semi-simple invariance groups”, J. Phys. A: Math. Theor., 40:19 (2007), 5083 | DOI | MR | Zbl

[16] Q. Huang, V. Lahno, C. Z. Qu, R. Zhdanov, “Preliminary group classification of a class of fourth-order evolution equations”, J. Math. Phys., 50:2 (2009), 023503 | DOI | MR | Zbl

[17] D.-j. Huang, H.-q. Zhang, “Preliminary group classification of quasilinear third-order evolution equations”, Appl. Math. Mech., 30 (2009), 275–292 | DOI | MR | Zbl

[18] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[19] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[20] G. W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, 1989 | MR | Zbl

[21] P. J. Olver, Applications of Lie groups to differential equations, Springer, Berlin, 1986 | MR | Zbl

[22] Mubarakzyanov G. M., “O razreshimykh algebrakh Li”, Izv. vyssh. uchebn. zaved. Matematika, 1963, no. 1, 114–123 | MR | Zbl