On properties of functions in exponential Takagi class
Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 28-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of functions in exponential Takagi class are similar to the Takagi continuous nowhere differentiable function described in 1903. These functions have one real parameter $v$ and are defined by the series $T_v(x)=\sum_{n=0}^\infty v^nT_0(2^nx)$, where $T_0(x)$ is the distance from $x\in\mathbb R$ to the nearest integer. For various values of $v$, we study the domain of such functions, their continuity, Hölder property, differentiability and concavity. Providing known results and proving missing facts, we give the complete description of these properties for each value of parameter $v$.
Keywords: continuity, differentiability, one-sided derivative, continuous nowhere differentiable Takagi function, Takagi class, exponential Takagi class, global maximum, concavity.
Mots-clés : domain, Hölder condition
@article{UFA_2015_7_3_a3,
     author = {O. E. Galkin and S. Yu. Galkina},
     title = {On properties of functions in exponential {Takagi} class},
     journal = {Ufa mathematical journal},
     pages = {28--37},
     year = {2015},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a3/}
}
TY  - JOUR
AU  - O. E. Galkin
AU  - S. Yu. Galkina
TI  - On properties of functions in exponential Takagi class
JO  - Ufa mathematical journal
PY  - 2015
SP  - 28
EP  - 37
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a3/
LA  - en
ID  - UFA_2015_7_3_a3
ER  - 
%0 Journal Article
%A O. E. Galkin
%A S. Yu. Galkina
%T On properties of functions in exponential Takagi class
%J Ufa mathematical journal
%D 2015
%P 28-37
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a3/
%G en
%F UFA_2015_7_3_a3
O. E. Galkin; S. Yu. Galkina. On properties of functions in exponential Takagi class. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 28-37. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a3/

[1] T. Takagi, “A simple example of a continuous function without derivative”, Proc. Phys. Math. Soc. Japan, 1 (1903), 176–177 | Zbl

[2] M. Hata, M. Yamaguti, “Takagi function and its generalization”, Japan J. Appl. Math., 1 (1984), 183–199 | DOI | MR | Zbl

[3] P. C. Allaart, K. Kawamura, “The Takagi function: a survey”, Real Anal. Exchange, 37:1 (2011/12), 1–54 | MR

[4] J. C. Lagarias, “The Takagi Function and Its Properties”, RIMS Kokyuroku Bessatsu B34: Functions and Number Theory and Their Probabilistic Aspects, Kyoto, 34, Aug. 2012, 153–189 | MR

[5] K. G. Spurrier, Continuous Nowhere Differentiable Functions, Senior Thesis, South Carolina Honors College, South Carolina, 2004

[6] A. Shidfar, K. Sabetfakhri, “On the Continuity of Van Der Waerden's Function in the Hölder Sense”, Amer. Math. Monthly, 93:5 (1986), 375–376 | DOI | MR | Zbl

[7] de Rham G., “Sur un exemple de fonction continue sans derivee”, Enseign. Math., 3 (1957), 71–72 | MR | Zbl

[8] M. Hata, M. Yamaguti, “Weierstrass's function and chaos”, Hokkaido Math. J., 12 (1983), 333–342 | MR | Zbl

[9] N. Kôno, “On generalized Takagi functions”, Acta Math. Hungar., 49 (1987), 315–324 | DOI | MR

[10] B. B. Mandelbrot, “Fractal landscapes without creases and with rivers”, The Science of Fractal Images, eds. H.-O. Peitgen, D. Saupe, Springer-Verlag, N.Y., 1988, 247, 313 pp. | MR

[11] J. P. Kahane, “Sur l'exemple, donné par M. de Rham, d'une fonction continue sans dérivée”, Enseignement Math., 5 (1959), 53–57 | MR | Zbl

[12] Galkina S. Yu., “O koeffitsientakh Fure–Khaara ot funktsii s ogranichennoi variatsiei”, Mat. zametki, 51:1 (1992), 42–54 | MR | Zbl

[13] J. Tabor, J. Tabor, “Takagi functions and approximate midconvexity”, J. Math. Anal. Appl., 356:2 (2009), 729–737 | DOI | MR | Zbl

[14] P. C. Allaart, “On the level sets of the Takagi-van der Waerden functions”, J. Math. Anal. Appl., 419 (2014), 1168–1180 | DOI | MR | Zbl