On properties of functions in exponential Takagi class
Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 28-37

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of functions in exponential Takagi class are similar to the Takagi continuous nowhere differentiable function described in 1903. These functions have one real parameter $v$ and are defined by the series $T_v(x)=\sum_{n=0}^\infty v^nT_0(2^nx)$, where $T_0(x)$ is the distance from $x\in\mathbb R$ to the nearest integer. For various values of $v$, we study the domain of such functions, their continuity, Hölder property, differentiability and concavity. Providing known results and proving missing facts, we give the complete description of these properties for each value of parameter $v$.
Keywords: continuity, differentiability, one-sided derivative, continuous nowhere differentiable Takagi function, Takagi class, exponential Takagi class, Hölder condition, global maximum, concavity.
Mots-clés : domain
@article{UFA_2015_7_3_a3,
     author = {O. E. Galkin and S. Yu. Galkina},
     title = {On properties of functions in exponential {Takagi} class},
     journal = {Ufa mathematical journal},
     pages = {28--37},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a3/}
}
TY  - JOUR
AU  - O. E. Galkin
AU  - S. Yu. Galkina
TI  - On properties of functions in exponential Takagi class
JO  - Ufa mathematical journal
PY  - 2015
SP  - 28
EP  - 37
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a3/
LA  - en
ID  - UFA_2015_7_3_a3
ER  - 
%0 Journal Article
%A O. E. Galkin
%A S. Yu. Galkina
%T On properties of functions in exponential Takagi class
%J Ufa mathematical journal
%D 2015
%P 28-37
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a3/
%G en
%F UFA_2015_7_3_a3
O. E. Galkin; S. Yu. Galkina. On properties of functions in exponential Takagi class. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 28-37. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a3/