On asymptotic formula for electric resistance of conductor with small contacts
Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 15-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct and justify rigorously the complete asymptotic expansion for the electric resistance of a three-dimensional resistance connected by two small contacts of arbitrary shape. We obtain explicit formulae for the first two terms in the asymptotics generalized the classical Helm formula of one-term asymptotics for two small round contacts of same radius.
Keywords: electrical resistance, small contacts, Helm formula, asymptotic expansion, boundary value problem, the method of matching asymptotic expansions, mixed problem.
Mots-clés : Laplace equation
@article{UFA_2015_7_3_a2,
     author = {R. R. Gadylshin and A. A. Ershov and S. V. Repyevsky},
     title = {On asymptotic formula for electric resistance of conductor with small contacts},
     journal = {Ufa mathematical journal},
     pages = {15--27},
     year = {2015},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a2/}
}
TY  - JOUR
AU  - R. R. Gadylshin
AU  - A. A. Ershov
AU  - S. V. Repyevsky
TI  - On asymptotic formula for electric resistance of conductor with small contacts
JO  - Ufa mathematical journal
PY  - 2015
SP  - 15
EP  - 27
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a2/
LA  - en
ID  - UFA_2015_7_3_a2
ER  - 
%0 Journal Article
%A R. R. Gadylshin
%A A. A. Ershov
%A S. V. Repyevsky
%T On asymptotic formula for electric resistance of conductor with small contacts
%J Ufa mathematical journal
%D 2015
%P 15-27
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a2/
%G en
%F UFA_2015_7_3_a2
R. R. Gadylshin; A. A. Ershov; S. V. Repyevsky. On asymptotic formula for electric resistance of conductor with small contacts. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 15-27. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a2/

[1] R. Holm, “Über Kontaktwiderstände, besonders bei Kohlekontakten”, Zeitschrift für technische Physik, 3:9 (1922), 290–294

[2] R. Holm, R. Störmer, “Eine Kontrolle des metallischen Charakters von gereinigten Platinkontakten”, Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern, 9:2 (1930), 323–330

[3] Kholm R., Elektricheskie kontakty, Inostrannaya literatura, M., 1961, 314 pp.

[4] Pavleino O. M., Pavlov V. A., Pavleino M. A., “Vliyanie rasplyvaniya kontaktnogo pyatna na protsess impulsnogo nagreva elektrodov”, Elektronnaya obrabotka materialov, 47:4 (2011), 142–149

[5] Plokhov I. V., “Model dinamiki tokoperedachi cherez skolzyaschii kontakt”, Elektrotekhnika, 2005, no. 2, 28–33

[6] Filippov V. V., Polyakov N. N., “Raspredeleniya potentsiala v anizotropnykh provodnikovykh kristallakh i plenkakh pri izmerenii elektroprovodimosti i koeffitsienta Kholla”, Vesti vysshikh uchebnykh zavedenii Chernozemya, 2011, no. 2(24), 6–10

[7] Ershov A. A., “Kraevaya ellipticheskaya zadacha s deltoobraznoi proizvodnoi na granitse”, Zh. vychisl. matem. i matem. fiz., 50:3 (2010), 479–485 | MR | Zbl

[8] Ershov A. A., “Asimptotika resheniya uravneniya Laplasa so smeshannymi usloviyami na granitse”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1064–1080 | MR | Zbl

[9] Ershov A. A., “K zadache ob izmerenii elektroprovodnosti”, Zh. vychisl. matem. i matem. fiz., 53:6 (2013), 1004–1007 | DOI | MR | Zbl

[10] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatlit, M., 1962, 336 pp. | MR

[11] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966, 515 pp. | MR

[12] Smirnov V. I., Kurs vysshei matematiki, v. 4, ch. 2, Nauka, M., 1981, 192 pp.

[13] Ilin A. M., Uravneniya matematicheskoi fiziki, Nauka, M., 2009, 192 pp.

[14] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, V 10 t., v. VIII, Elektrodinamika sploshnykh sred, Fizmatlit, M., 2005, 656 pp.

[15] S. Zaremba, “Sur un problème mixte relatif a l'équation de Laplace”, Bulletin de l'Académie des sciences de Cracovie. Classe des sciences mathématiques et naturelles, série A, 1910, 313–344 | Zbl

[16] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 391 pp. | MR

[17] Gadylshin R. R., “Asimptotika sobstvennogo znacheniya singulyarno vozmuschennoi ellipticheskoi zadachi s malym parametorm v granichnom uslovii”, Differents. uravneniya, 22:4 (1986), 640–652 | MR | Zbl

[18] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[19] V. Maz'ya, S. Nazarov, B. Plamenevsky, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Birkhaeuser Verlag, Basel, 2000, 336 pp. | Zbl

[20] Gadylshin R. R., “Metod soglasovaniya asimptoticheskikh razlozhenii v singulyarno vozmuschennoi kraevoi zadache dlya operatora Laplasa”, Sovrem. matematika i ee prilozheniya, 5 (2003), 3–32 | Zbl

[21] Bikmetov A. R., Gadylshin R. R., “Vozmuschenie ellipticheskogo operatora uzkim potentsialom v $n$-mernoi oblasti”, Ufimsk. matem. zhurn., 4:2 (2012), 28–64

[22] Ershov A. A., “O smeshannoi zadache dlya garmonicheskoi funktsii”, Zh. vychisl. matem. i matem. fiz., 53:7 (2013), 1094–1106 | DOI | MR | Zbl

[23] Gadylshin R. R., “Rasscheplenie kratnogo sobstvennogo znacheniya zadachi Dirikhle dlya operatora Laplasa pri singulyarnom vozmuschenii granichnogo usloviya”, Matem. zametki, 52:4 (1992), 42–55 | MR | Zbl

[24] Gadylshin R. R., “Rasscheplenie kratnogo sobstvennogo znacheniya v kraevoi zadache dlya membrany, zakreplennoi na malom uchastke granitse”, Sib. matem. zhurn., 34:3 (1993), 43–61 | MR | Zbl

[25] Gadylshin R. R., Shishkina E. A., “O neravenstvakh Fridrikhsa dlya kruga”, Tr. IMM UrO RAN, 18, no. 2, 2012, 48–61

[26] Gadylshin R. R., Repevskii S. V., Shishkina E. A., “O sobstvennom znachenii dlya laplasiana v kruge s granichnym usloviem Dirikhle na malom uchastke granitsy v kriticheskom sluchae”, Tr. IMM UrO RAN, 21, no. 1, 2015, 56–70

[27] Gadylshin R. R., “O vozmuschenii spektra Laplasiana pri smene tipa granichnogo usloviya na maloi chasti granitsy”, Zh. vychisl. matem. i matem. fiz., 36:7 (1996), 77–88 | MR | Zbl