On an inverse spectral problem for Sturm–Liouville operator with discontinuous coefficient
Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 119-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the direct and inverse problems for Sturm–Liouville operator with discontinuous coefficient are studied. The spectral properties of the Sturm–Liouville problem with discontinuous coefficient such as the orthogonality of its eigenfunctions and simplicity of its eigenvalues are investigated. Asymptotic formulas for eigenvalues and eigenfunctions of this problem are examined. The resolvent operator is constructed and the expansion formula with respect to eigenfunctions is obtained. It is shown that eigenfunctions of this problem are in the form of a complete system. The Weyl solution and Weyl function are defined. Uniqueness theorems for the solution of the inverse problem according to Weyl function and spectral date are proved.
Keywords: Sturm–Liouville operator, expansion formula, inverse problem, Weyl function.
@article{UFA_2015_7_3_a12,
     author = {Kh. R. Mamedov and D. Karahan},
     title = {On an inverse spectral problem for {Sturm{\textendash}Liouville} operator with discontinuous coefficient},
     journal = {Ufa mathematical journal},
     pages = {119--131},
     year = {2015},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a12/}
}
TY  - JOUR
AU  - Kh. R. Mamedov
AU  - D. Karahan
TI  - On an inverse spectral problem for Sturm–Liouville operator with discontinuous coefficient
JO  - Ufa mathematical journal
PY  - 2015
SP  - 119
EP  - 131
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a12/
LA  - en
ID  - UFA_2015_7_3_a12
ER  - 
%0 Journal Article
%A Kh. R. Mamedov
%A D. Karahan
%T On an inverse spectral problem for Sturm–Liouville operator with discontinuous coefficient
%J Ufa mathematical journal
%D 2015
%P 119-131
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a12/
%G en
%F UFA_2015_7_3_a12
Kh. R. Mamedov; D. Karahan. On an inverse spectral problem for Sturm–Liouville operator with discontinuous coefficient. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 119-131. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a12/

[1] A. N. Tikhonov, A. A. Samarskii, Equation of Mathematical Physics, Dover Books on Physics and Chemistry, Dover, New York, 1990 | MR

[2] A. N. Tikhonov, “On unıqueness of the solution of a electroreconnaissance problem”, Dokl. Akad. Nauk SSSR, 69 (1949), 797–800 | MR | Zbl

[3] M. L. Rasulov, Methods of Contour Integration, Series in Applied Mathematics and Mechanics, 3, Nort-Holland, Amsterdam, 1967 | Zbl

[4] G. Freiling, V. Yurko, Inverse Sturm–Liouville Problems and Their Applications, Nova Science Publishers Inc., 2008 | MR

[5] A. Zettl, Sturm–Liouville Theory, Mathematical Surveys and Monograps, 121, Am. Math. Soc., Providence, 2005 | MR | Zbl

[6] A. M. Akhtyamov, A. V. Mouftakhov, “Identification of boundary conditions using natural frequencies”, Inverse Problems in Science and Engineering, 12:4 (2004), 393–408 | DOI | MR

[7] A. M. Akhtyamov, Theory of identification of boundary conditions and its applications, Fizmatlit, Moscow, 2009 | Zbl

[8] V. A. Sadovnichy, Y. T. Sultanaev, A. M. Akhtyamov, Inverse Sturm–Liouville Problems with Nonseparated Boundary Conditions, MSU, Moscow, 2009

[9] M. G. Gasymov, “The direct and inverse problem of spectral analysis for a class of equations with a discontinuous coefficient”, Non-Classical Methods in Geophysics, ed. M. M. Lavrent'ev, Nauka, Novosibirsk, Russia, 1977

[10] O. H. Hald, “Discontinuos inverse eigenvalue problems”, Comm. Pure Appl. Math., 37 (1984), 539–577 | DOI | MR | Zbl

[11] Kh. R. Mamedov, “On an Inverse Scattering Problem for a Discontinuous Sturm-Liouville Equation with a Spectral Parameter in the Boundary Condition”, Bond. Value Probl., 2010 (2010), Article ID 171967, 17 pp. | MR

[12] A. A. Sedipkov, “The inverse spectral problem for the Sturm–Liouville operator with discontinuous potantial”, J. Inverse III-Posed Probl., 20 (2012), 139–167 | MR | Zbl

[13] R. Carlson, “An inverse spectral problem for Sturm–Liouville operators with discontinuous coefficients”, Proc. Amer. Math. Soc., 120:2 (1994), 5–9 | DOI | MR

[14] E. N. Akhmedova, “On representation of a solution of Sturm–Liouville equation with discontinuous coefficients”, Proceedings of IMM of NAS of Azarbaijan, 16:24 (2002), 5–9 | MR | Zbl

[15] N. Altinisik, M. Kadakal, O. Mukhtarov, “Eigenvalues and eigenfunctios of discontinuos Sturm–Liouville problems with eigenparameter dependent boundary conditions”, Acta Math. Hung., 102:1–2 (2004), 159–175 | DOI | MR | Zbl

[16] Kh. R. Mamedov, “On a basis problem for a second order differential equation with a discontinuous coefficient and a spectral parameter in the boundary conditions”, Geometry, Integrability and Quantization, 7 (2006), 218–225 | MR

[17] A. R. Aliev, “Solvability of a class of boundary value problems for second-order operator-differential equations with a discontinuous coefficient in a weighted space”, Differential Equations, 43:10 (2007), 1459–1463 | DOI | MR | Zbl

[18] C. F. Yang, “Inverse nodal problems of discontinuous Sturm–Liouville operator”, Journal of Differential Equations, 254:4 (2013), 1992–2014 | DOI | MR | Zbl

[19] B. Aliev, Y. S. Yakubov, “Solvability of boundary value problems for second-order elliptic differential-operator equations with a spectral parameter and with a discontinuous coeffifient at the highest derivative”, Differential Equations, 50:4 (2014), 464–475 | DOI | MR | Zbl

[20] R. S. Anderssen, “The effect of discontinuities in destiny and shear velocity on the asymptotic overtone structure of torsional eigenfrequencies of the earth”, Geophys. J. R. Astr. Soc., 50 (1977), 303–309 | DOI

[21] Kh. R. Mamedov, F. A. Cetinkaya, “An uniqueness theorem for a Sturm–Liouville equation with spectral parameter in bondary conditions”, Appl. Math. Inf. Sci., 9:2 (2015), 981–988 | MR

[22] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac Operators, Kluwer Academic Publisher, Dordrecth–Boston–London, 1991 | MR

[23] B. M. Levitan, Inverse Sturm–Liouville Problems, Translated from the Russian by O. Efimov, VNU Science Press BV, Utrecht, 1987 | MR | Zbl

[24] V. A. Marchenko, Sturm–Liouville Operators and Their Applications, Naukova Dumka, Kiev, 1977 | MR | Zbl