@article{UFA_2015_7_3_a12,
author = {Kh. R. Mamedov and D. Karahan},
title = {On an inverse spectral problem for {Sturm{\textendash}Liouville} operator with discontinuous coefficient},
journal = {Ufa mathematical journal},
pages = {119--131},
year = {2015},
volume = {7},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a12/}
}
TY - JOUR AU - Kh. R. Mamedov AU - D. Karahan TI - On an inverse spectral problem for Sturm–Liouville operator with discontinuous coefficient JO - Ufa mathematical journal PY - 2015 SP - 119 EP - 131 VL - 7 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a12/ LA - en ID - UFA_2015_7_3_a12 ER -
Kh. R. Mamedov; D. Karahan. On an inverse spectral problem for Sturm–Liouville operator with discontinuous coefficient. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 119-131. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a12/
[1] A. N. Tikhonov, A. A. Samarskii, Equation of Mathematical Physics, Dover Books on Physics and Chemistry, Dover, New York, 1990 | MR
[2] A. N. Tikhonov, “On unıqueness of the solution of a electroreconnaissance problem”, Dokl. Akad. Nauk SSSR, 69 (1949), 797–800 | MR | Zbl
[3] M. L. Rasulov, Methods of Contour Integration, Series in Applied Mathematics and Mechanics, 3, Nort-Holland, Amsterdam, 1967 | Zbl
[4] G. Freiling, V. Yurko, Inverse Sturm–Liouville Problems and Their Applications, Nova Science Publishers Inc., 2008 | MR
[5] A. Zettl, Sturm–Liouville Theory, Mathematical Surveys and Monograps, 121, Am. Math. Soc., Providence, 2005 | MR | Zbl
[6] A. M. Akhtyamov, A. V. Mouftakhov, “Identification of boundary conditions using natural frequencies”, Inverse Problems in Science and Engineering, 12:4 (2004), 393–408 | DOI | MR
[7] A. M. Akhtyamov, Theory of identification of boundary conditions and its applications, Fizmatlit, Moscow, 2009 | Zbl
[8] V. A. Sadovnichy, Y. T. Sultanaev, A. M. Akhtyamov, Inverse Sturm–Liouville Problems with Nonseparated Boundary Conditions, MSU, Moscow, 2009
[9] M. G. Gasymov, “The direct and inverse problem of spectral analysis for a class of equations with a discontinuous coefficient”, Non-Classical Methods in Geophysics, ed. M. M. Lavrent'ev, Nauka, Novosibirsk, Russia, 1977
[10] O. H. Hald, “Discontinuos inverse eigenvalue problems”, Comm. Pure Appl. Math., 37 (1984), 539–577 | DOI | MR | Zbl
[11] Kh. R. Mamedov, “On an Inverse Scattering Problem for a Discontinuous Sturm-Liouville Equation with a Spectral Parameter in the Boundary Condition”, Bond. Value Probl., 2010 (2010), Article ID 171967, 17 pp. | MR
[12] A. A. Sedipkov, “The inverse spectral problem for the Sturm–Liouville operator with discontinuous potantial”, J. Inverse III-Posed Probl., 20 (2012), 139–167 | MR | Zbl
[13] R. Carlson, “An inverse spectral problem for Sturm–Liouville operators with discontinuous coefficients”, Proc. Amer. Math. Soc., 120:2 (1994), 5–9 | DOI | MR
[14] E. N. Akhmedova, “On representation of a solution of Sturm–Liouville equation with discontinuous coefficients”, Proceedings of IMM of NAS of Azarbaijan, 16:24 (2002), 5–9 | MR | Zbl
[15] N. Altinisik, M. Kadakal, O. Mukhtarov, “Eigenvalues and eigenfunctios of discontinuos Sturm–Liouville problems with eigenparameter dependent boundary conditions”, Acta Math. Hung., 102:1–2 (2004), 159–175 | DOI | MR | Zbl
[16] Kh. R. Mamedov, “On a basis problem for a second order differential equation with a discontinuous coefficient and a spectral parameter in the boundary conditions”, Geometry, Integrability and Quantization, 7 (2006), 218–225 | MR
[17] A. R. Aliev, “Solvability of a class of boundary value problems for second-order operator-differential equations with a discontinuous coefficient in a weighted space”, Differential Equations, 43:10 (2007), 1459–1463 | DOI | MR | Zbl
[18] C. F. Yang, “Inverse nodal problems of discontinuous Sturm–Liouville operator”, Journal of Differential Equations, 254:4 (2013), 1992–2014 | DOI | MR | Zbl
[19] B. Aliev, Y. S. Yakubov, “Solvability of boundary value problems for second-order elliptic differential-operator equations with a spectral parameter and with a discontinuous coeffifient at the highest derivative”, Differential Equations, 50:4 (2014), 464–475 | DOI | MR | Zbl
[20] R. S. Anderssen, “The effect of discontinuities in destiny and shear velocity on the asymptotic overtone structure of torsional eigenfrequencies of the earth”, Geophys. J. R. Astr. Soc., 50 (1977), 303–309 | DOI
[21] Kh. R. Mamedov, F. A. Cetinkaya, “An uniqueness theorem for a Sturm–Liouville equation with spectral parameter in bondary conditions”, Appl. Math. Inf. Sci., 9:2 (2015), 981–988 | MR
[22] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac Operators, Kluwer Academic Publisher, Dordrecth–Boston–London, 1991 | MR
[23] B. M. Levitan, Inverse Sturm–Liouville Problems, Translated from the Russian by O. Efimov, VNU Science Press BV, Utrecht, 1987 | MR | Zbl
[24] V. A. Marchenko, Sturm–Liouville Operators and Their Applications, Naukova Dumka, Kiev, 1977 | MR | Zbl