Asymptotic approach to the perfect cuboid problem
Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 95-107

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of perfect cuboids is one of the old unsolved problems in number theory. By means of various methods it can be reduced to finding a solution of some single Diophantine equation of high degree obeying certain restrictions in the form of inequalities. Each such Diophantine equation is called a characteristic equation of a perfect cuboid. In this paper we present the results obtained by applying asymptotic metods to one of the characteristic equations of a perfect cuboid in the case of the second cuboid conjecture. This results shrink the domain of the integer parameters of the considered characteristic equation and thus make more effective the computer search of perfect cuboids based on this equation.
Keywords: perfect cuboid, asymptotic methods.
Mots-clés : Diophantine equations
@article{UFA_2015_7_3_a10,
     author = {R. A. Sharipov},
     title = {Asymptotic approach to the perfect cuboid problem},
     journal = {Ufa mathematical journal},
     pages = {95--107},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a10/}
}
TY  - JOUR
AU  - R. A. Sharipov
TI  - Asymptotic approach to the perfect cuboid problem
JO  - Ufa mathematical journal
PY  - 2015
SP  - 95
EP  - 107
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a10/
LA  - en
ID  - UFA_2015_7_3_a10
ER  - 
%0 Journal Article
%A R. A. Sharipov
%T Asymptotic approach to the perfect cuboid problem
%J Ufa mathematical journal
%D 2015
%P 95-107
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a10/
%G en
%F UFA_2015_7_3_a10
R. A. Sharipov. Asymptotic approach to the perfect cuboid problem. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 95-107. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a10/