Mots-clés : Diophantine equations
@article{UFA_2015_7_3_a10,
author = {R. A. Sharipov},
title = {Asymptotic approach to the perfect cuboid problem},
journal = {Ufa mathematical journal},
pages = {95--107},
year = {2015},
volume = {7},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a10/}
}
R. A. Sharipov. Asymptotic approach to the perfect cuboid problem. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 95-107. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a10/
[1] Halcke P., Deliciae mathematicae oder mathematisches Sinnen-Confect, N. Sauer, Hamburg, Germany, 1719
[2] Saunderson N., Elements of algebra, v. 2, Cambridge Univ. Press, Cambridge, 1740
[3] Euler L., Vollständige Anleitung zur Algebra, Kayserliche Akademie der Wissenschaften, St. Petersburg, 1771
[4] Pocklington H. C., “Some Diophantine impossibilities”, Proc. Cambridge Phil. Soc., 17 (1912), 108–121
[5] Dickson L. E., History of the theory of numbers, v. 2, Diophantine analysis, Dover, New York, 2005
[6] Kraitchik M., “On certain rational cuboids”, Scripta Math., 11 (1945), 317–326 | MR | Zbl
[7] Kraitchik M., Théorie des Nombres, v. 3, Analyse Diophantine et application aux cuboides rationelles, Gauthier-Villars, Paris, 1947
[8] Kraitchik M., “Sur les cuboides rationelles”, Proc. Int. Congr. Math., v. 2, Amsterdam, 1954, 33–34
[9] Bromhead T. B., “On square sums of squares”, Math. Gazette, 44:349 (1960), 219–220 | DOI | MR | Zbl
[10] Lal M., Blundon W. J., “Solutions of the Diophantine equations $x^2+y^2=l^2$, $y^2+z^2=m^2$, $z^2+x^2=n^2$”, Math. Comp., 20 (1966), 144–147 | MR | Zbl
[11] Spohn W. G., “On the integral cuboid”, Amer. Math. Monthly, 79:1 (1972), 57–59 | DOI | MR | Zbl
[12] Spohn W. G., “On the derived cuboid”, Canad. Math. Bull., 17:4 (1974), 575–577 | DOI | MR | Zbl
[13] Chein E. Z., “On the derived cuboid of an Eulerian triple”, Canad. Math. Bull., 20:4 (1977), 509–510 | DOI | MR | Zbl
[14] Leech J., “The rational cuboid revisited”, Amer. Math. Monthly, 84:7 (1977), 518–533 ; “Erratum”, Amer. Math. Monthly, 85 (1978), 472 | DOI | MR | Zbl | DOI | MR | Zbl
[15] Leech J.,, “Five tables relating to rational cuboids”, Math. Comp., 32 (1978), 657–659 | DOI
[16] Spohn W. G., “Table of integral cuboids and their generators”, Math. Comp., 33 (1979), 428–429 | DOI
[17] Lagrange J., “Sur le dérivé du cuboide Eulérien”, Canad. Math. Bull., 22:2 (1979), 239–241 | DOI | MR
[18] Leech J., “A remark on rational cuboids”, Canad. Math. Bull., 24:3 (1981), 377–378 | DOI | MR | Zbl
[19] Korec I., “Nonexistence of small perfect rational cuboid”, Acta Math. Univ. Comen., 42/43 (1983), 73–86 | MR | Zbl
[20] Korec I., “Nonexistence of small perfect rational cuboid. II”, Acta Math. Univ. Comen., 44/45 (1984), 39–48 | MR | Zbl
[21] Wells D. G., The Penguin dictionary of curious and interesting numbers, Penguin publishers, London, 1986
[22] Bremner A., Guy R. K., “A dozen difficult Diophantine dilemmas”, Amer. Math. Monthly, 95:1 (1988), 31–36 | DOI | MR | Zbl
[23] Bremner A., “The rational cuboid and a quartic surface”, Rocky Mountain J. Math., 18:1 (1988), 105–121 | DOI | MR | Zbl
[24] Colman W. J. A., “On certain semiperfect cuboids”, Fibonacci Quart., 26:1 (1988), 54–57 | MR | Zbl
[25] Korec I., “Lower bounds for perfect rational cuboids”, Math. Slovaca, 42:5 (1992), 565–582 | MR | Zbl
[26] Guy R. K., “Is there a perfect cuboid? Four squares whose sums in pairs are square. Four squares whose differences are square”, Unsolved Problems in Number Theory, 2-nd ed., Springer-Verlag, New York, 1994, 173–181
[27] Rathbun R. L., Granlund T., “The integer cuboid table with body, edge, and face type of solutions”, Math. Comp., 62 (1994), 441–442 | DOI
[28] Rathbun R. L., Granlund T., “The classical rational cuboid table of Maurice Kraitchik”, Math. Comp., 62 (1994), 442–443 | DOI
[29] Colman W. J. A., “A perfect cuboid in Gaussian integers”, Fibonacci Quart., 32:3 (1994), 266–268 | MR | Zbl
[30] Peterson B. E., Jordan J. H., “Integer hexahedra equivalent to perfect boxes”, Amer. Math. Monthly, 102:1 (1995), 41–45 | DOI | MR | Zbl
[31] Van Luijk R., On perfect cuboids, Doctoraalscriptie, Mathematisch Instituut, Universiteit Utrecht, Utrecht, 2000
[32] Luca F., “Perfect cuboids and perfect square triangles”, Math. Magazine, 73:5 (2000), 400–401 | DOI | MR
[33] Rathbun R. L., The rational cuboid table of Maurice Kraitchik, arXiv: math/0111229[math.HO]
[34] Narumiya N., Shiga H., “On Certain Rational Cuboid Problems”, Nihonkai Math. Journal, 12:1 (2001), 75–88 | MR | Zbl
[35] Hartshorne R., Van Luijk R., Non-Euclidean Pythagorean triples, a problem of Euler, and rational points on K3 surfaces, arXiv: math/0606700[math.NT]
[36] Waldschmidt M., Open diophantine problems, arXiv: math/0312440[math.NT] | MR
[37] Ionascu E. J., Luca F., Stanica P., Heron triangles with two fixed sides, arXiv: math/0608185[math.NT] | MR
[38] Ortan A., Quenneville-Belair V., “Euler's brick”, Delta Epsilon, McGill Undergraduate Mathematics Journal, 1 (2006), 30–33
[39] Knill O., “Hunting for Perfect Euler Bricks”, Harvard College Math. Review, 2:2 (2008), 102
[40] Sloan N. J. A., Sequences A031173, On-line encyclopedia of integer sequences, OEIS Foundation Inc., Portland, USA, http://oeis.org/A031173
[41] Roberts T. S., “Some constraints on the existence of a perfect cuboid”, Australian mathematical society gazette, 37:1 (2010), 29–31 | MR | Zbl
[42] Stoll M., Testa D., The surface parametrizing cuboids, arXiv: 1009.0388[math.AG]
[43] Sawyer J., Reiter C. A., “Perfect parallelepipeds exist”, Math. Comp., 80 (2011), 1037–1040 | DOI | MR | Zbl
[44] Meskhishvili M., Perfect cuboid and congruent number equation solutions, arXiv: 1211.6548[math.NT]
[45] Beauville A., A tale of two surfaces, arXiv: 1303.1910[math.AG]
[46] Freitag E., Manni R. S., Parametrization of the box variety by theta functions, arXiv: 1303.6495[math.AG]
[47] Sokolowsky B. D., VanHooft R. M., Reiter C. A., “An infinite family of perfect parallelepipeds”, Math. Comp., 83 (2014), 2441–2454 | DOI | MR | Zbl
[48] Meskhishvili M., Parametric solutions for a nearly-perfect cuboid, arXiv: 1502.02375[math.NT]
[49] Kitchen S., On the existence of perfect cuboids, OURE publication, Missouri University of Science and Technology, 2015
[50] Wyss W., On perfect cuboids, arXiv: 1506.02215[math.NT]
[51] Sharipov R. A., A note on a perfect Euler cuboid, arXiv: 1104.1716[math.NT]
[52] Sharipov R. A., “Neprivodimye polinomy v zadache o sovershennom kuboide”, Ufimskii matematicheskii zhurnal, 4:1 (2012), 153–160 ; arXiv: 1108.5348[math.NT]
[53] Sharipov R. A., A note on the first cuboid conjecture, arXiv: 1109.2534[math.NT]
[54] Sharipov R. A., A note on the second cuboid conjecture. Part I, arXiv: 1201.1229[math.NT]
[55] Sharipov R. A., A note on the third cuboid conjecture. Part I, arXiv: 1203.2567[math.NT]
[56] Masharov A. A., Sharipov R. A., A strategy of numeric search for perfect cuboids in the case of the second cuboid conjecture, arXiv: 1504.07161[math.NT]
[57] Sharipov R. A., Reverse asymptotic estimates for roots of the cuboid characteristic equation in the case of the second cuboid conjecture, arXiv: 1505.00724[math.NT]
[58] Sharipov R. A., Asymptotic estimates for roots of the cuboid characteristic equation in the linear region, arXiv: 1505.02745[math.NT]
[59] Sharipov R. A., Asymptotic estimates for roots of the cuboid characteristic equation in the nonlinear region, arXiv: 1506.04705[math.NT]
[60] Sharipov R. A., Perfect cuboids and multisymmetric polynomials, arXiv: 1205.3135[math.NT]
[61] Sharipov R. A., On an ideal of multisymmetric polynomials associated with perfect cuboids, arXiv: 1206.6769[math.NT]
[62] Sharipov R. A., On the equivalence of cuboid equations and their factor equations, arXiv: 1207.2102[math.NT]
[63] Sharipov R. A., A biquadratic Diophantine equation associated with perfect cuboids, arXiv: 1207.4081[math.NT]
[64] Ramsden J. R., A general rational solution of an equation associated with perfect cuboids, arXiv: 1207.5339[math.NT]
[65] Ramsden J. R., Sharipov R. A., Inverse problems associated with perfect cuboids, arXiv: 1207.6764[math.NT]
[66] Sharipov R. A., On a pair of cubic equations associated with perfect cuboids, arXiv: 1208.0308[math.NT]
[67] Sharipov R. A., On two elliptic curves associated with perfect cuboids, arXiv: 1208.1227[math.NT]
[68] Ramsden J. R., Sharipov R. A., On singularities of the inverse problems associated with perfect cuboids, arXiv: 1208.1859[math.NT]
[69] Ramsden J. R., Sharipov R. A., On two algebraic parametrizations for rational solutions of the cuboid equations, arXiv: 1208.2587[math.NT]
[70] Sharipov R. A., A note on solutions of the cuboid factor equations, arXiv: 1209.0723[math.NT]
[71] Sharipov R. A., A note on rational and elliptic curves associated with the cuboid factor equations, arXiv: 1209.5706[math.NT]
[72] Ramsden J. R., Sharipov R. A., Two and three descent for elliptic curves associated with perfect cuboids, arXiv: 1303.0765[math.NT]
[73] Kaschenko I. S., Asimptoticheskie razlozheniya reshenii uravnenii, Izdanie YarGU, Yaroslavl, 2011
[74] Sharipov R. A., A note on invertible quadratic transformations of the real plane, arXiv: 1507.01861[math.AG]