Asymptotic approach to the perfect cuboid problem
Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 95-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of perfect cuboids is one of the old unsolved problems in number theory. By means of various methods it can be reduced to finding a solution of some single Diophantine equation of high degree obeying certain restrictions in the form of inequalities. Each such Diophantine equation is called a characteristic equation of a perfect cuboid. In this paper we present the results obtained by applying asymptotic metods to one of the characteristic equations of a perfect cuboid in the case of the second cuboid conjecture. This results shrink the domain of the integer parameters of the considered characteristic equation and thus make more effective the computer search of perfect cuboids based on this equation.
Keywords: perfect cuboid, asymptotic methods.
Mots-clés : Diophantine equations
@article{UFA_2015_7_3_a10,
     author = {R. A. Sharipov},
     title = {Asymptotic approach to the perfect cuboid problem},
     journal = {Ufa mathematical journal},
     pages = {95--107},
     year = {2015},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a10/}
}
TY  - JOUR
AU  - R. A. Sharipov
TI  - Asymptotic approach to the perfect cuboid problem
JO  - Ufa mathematical journal
PY  - 2015
SP  - 95
EP  - 107
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a10/
LA  - en
ID  - UFA_2015_7_3_a10
ER  - 
%0 Journal Article
%A R. A. Sharipov
%T Asymptotic approach to the perfect cuboid problem
%J Ufa mathematical journal
%D 2015
%P 95-107
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a10/
%G en
%F UFA_2015_7_3_a10
R. A. Sharipov. Asymptotic approach to the perfect cuboid problem. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 95-107. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a10/

[1] Halcke P., Deliciae mathematicae oder mathematisches Sinnen-Confect, N. Sauer, Hamburg, Germany, 1719

[2] Saunderson N., Elements of algebra, v. 2, Cambridge Univ. Press, Cambridge, 1740

[3] Euler L., Vollständige Anleitung zur Algebra, Kayserliche Akademie der Wissenschaften, St. Petersburg, 1771

[4] Pocklington H. C., “Some Diophantine impossibilities”, Proc. Cambridge Phil. Soc., 17 (1912), 108–121

[5] Dickson L. E., History of the theory of numbers, v. 2, Diophantine analysis, Dover, New York, 2005

[6] Kraitchik M., “On certain rational cuboids”, Scripta Math., 11 (1945), 317–326 | MR | Zbl

[7] Kraitchik M., Théorie des Nombres, v. 3, Analyse Diophantine et application aux cuboides rationelles, Gauthier-Villars, Paris, 1947

[8] Kraitchik M., “Sur les cuboides rationelles”, Proc. Int. Congr. Math., v. 2, Amsterdam, 1954, 33–34

[9] Bromhead T. B., “On square sums of squares”, Math. Gazette, 44:349 (1960), 219–220 | DOI | MR | Zbl

[10] Lal M., Blundon W. J., “Solutions of the Diophantine equations $x^2+y^2=l^2$, $y^2+z^2=m^2$, $z^2+x^2=n^2$”, Math. Comp., 20 (1966), 144–147 | MR | Zbl

[11] Spohn W. G., “On the integral cuboid”, Amer. Math. Monthly, 79:1 (1972), 57–59 | DOI | MR | Zbl

[12] Spohn W. G., “On the derived cuboid”, Canad. Math. Bull., 17:4 (1974), 575–577 | DOI | MR | Zbl

[13] Chein E. Z., “On the derived cuboid of an Eulerian triple”, Canad. Math. Bull., 20:4 (1977), 509–510 | DOI | MR | Zbl

[14] Leech J., “The rational cuboid revisited”, Amer. Math. Monthly, 84:7 (1977), 518–533 ; “Erratum”, Amer. Math. Monthly, 85 (1978), 472 | DOI | MR | Zbl | DOI | MR | Zbl

[15] Leech J.,, “Five tables relating to rational cuboids”, Math. Comp., 32 (1978), 657–659 | DOI

[16] Spohn W. G., “Table of integral cuboids and their generators”, Math. Comp., 33 (1979), 428–429 | DOI

[17] Lagrange J., “Sur le dérivé du cuboide Eulérien”, Canad. Math. Bull., 22:2 (1979), 239–241 | DOI | MR

[18] Leech J., “A remark on rational cuboids”, Canad. Math. Bull., 24:3 (1981), 377–378 | DOI | MR | Zbl

[19] Korec I., “Nonexistence of small perfect rational cuboid”, Acta Math. Univ. Comen., 42/43 (1983), 73–86 | MR | Zbl

[20] Korec I., “Nonexistence of small perfect rational cuboid. II”, Acta Math. Univ. Comen., 44/45 (1984), 39–48 | MR | Zbl

[21] Wells D. G., The Penguin dictionary of curious and interesting numbers, Penguin publishers, London, 1986

[22] Bremner A., Guy R. K., “A dozen difficult Diophantine dilemmas”, Amer. Math. Monthly, 95:1 (1988), 31–36 | DOI | MR | Zbl

[23] Bremner A., “The rational cuboid and a quartic surface”, Rocky Mountain J. Math., 18:1 (1988), 105–121 | DOI | MR | Zbl

[24] Colman W. J. A., “On certain semiperfect cuboids”, Fibonacci Quart., 26:1 (1988), 54–57 | MR | Zbl

[25] Korec I., “Lower bounds for perfect rational cuboids”, Math. Slovaca, 42:5 (1992), 565–582 | MR | Zbl

[26] Guy R. K., “Is there a perfect cuboid? Four squares whose sums in pairs are square. Four squares whose differences are square”, Unsolved Problems in Number Theory, 2-nd ed., Springer-Verlag, New York, 1994, 173–181

[27] Rathbun R. L., Granlund T., “The integer cuboid table with body, edge, and face type of solutions”, Math. Comp., 62 (1994), 441–442 | DOI

[28] Rathbun R. L., Granlund T., “The classical rational cuboid table of Maurice Kraitchik”, Math. Comp., 62 (1994), 442–443 | DOI

[29] Colman W. J. A., “A perfect cuboid in Gaussian integers”, Fibonacci Quart., 32:3 (1994), 266–268 | MR | Zbl

[30] Peterson B. E., Jordan J. H., “Integer hexahedra equivalent to perfect boxes”, Amer. Math. Monthly, 102:1 (1995), 41–45 | DOI | MR | Zbl

[31] Van Luijk R., On perfect cuboids, Doctoraalscriptie, Mathematisch Instituut, Universiteit Utrecht, Utrecht, 2000

[32] Luca F., “Perfect cuboids and perfect square triangles”, Math. Magazine, 73:5 (2000), 400–401 | DOI | MR

[33] Rathbun R. L., The rational cuboid table of Maurice Kraitchik, arXiv: math/0111229[math.HO]

[34] Narumiya N., Shiga H., “On Certain Rational Cuboid Problems”, Nihonkai Math. Journal, 12:1 (2001), 75–88 | MR | Zbl

[35] Hartshorne R., Van Luijk R., Non-Euclidean Pythagorean triples, a problem of Euler, and rational points on K3 surfaces, arXiv: math/0606700[math.NT]

[36] Waldschmidt M., Open diophantine problems, arXiv: math/0312440[math.NT] | MR

[37] Ionascu E. J., Luca F., Stanica P., Heron triangles with two fixed sides, arXiv: math/0608185[math.NT] | MR

[38] Ortan A., Quenneville-Belair V., “Euler's brick”, Delta Epsilon, McGill Undergraduate Mathematics Journal, 1 (2006), 30–33

[39] Knill O., “Hunting for Perfect Euler Bricks”, Harvard College Math. Review, 2:2 (2008), 102

[40] Sloan N. J. A., Sequences A031173, On-line encyclopedia of integer sequences, OEIS Foundation Inc., Portland, USA, http://oeis.org/A031173

[41] Roberts T. S., “Some constraints on the existence of a perfect cuboid”, Australian mathematical society gazette, 37:1 (2010), 29–31 | MR | Zbl

[42] Stoll M., Testa D., The surface parametrizing cuboids, arXiv: 1009.0388[math.AG]

[43] Sawyer J., Reiter C. A., “Perfect parallelepipeds exist”, Math. Comp., 80 (2011), 1037–1040 | DOI | MR | Zbl

[44] Meskhishvili M., Perfect cuboid and congruent number equation solutions, arXiv: 1211.6548[math.NT]

[45] Beauville A., A tale of two surfaces, arXiv: 1303.1910[math.AG]

[46] Freitag E., Manni R. S., Parametrization of the box variety by theta functions, arXiv: 1303.6495[math.AG]

[47] Sokolowsky B. D., VanHooft R. M., Reiter C. A., “An infinite family of perfect parallelepipeds”, Math. Comp., 83 (2014), 2441–2454 | DOI | MR | Zbl

[48] Meskhishvili M., Parametric solutions for a nearly-perfect cuboid, arXiv: 1502.02375[math.NT]

[49] Kitchen S., On the existence of perfect cuboids, OURE publication, Missouri University of Science and Technology, 2015

[50] Wyss W., On perfect cuboids, arXiv: 1506.02215[math.NT]

[51] Sharipov R. A., A note on a perfect Euler cuboid, arXiv: 1104.1716[math.NT]

[52] Sharipov R. A., “Neprivodimye polinomy v zadache o sovershennom kuboide”, Ufimskii matematicheskii zhurnal, 4:1 (2012), 153–160 ; arXiv: 1108.5348[math.NT]

[53] Sharipov R. A., A note on the first cuboid conjecture, arXiv: 1109.2534[math.NT]

[54] Sharipov R. A., A note on the second cuboid conjecture. Part I, arXiv: 1201.1229[math.NT]

[55] Sharipov R. A., A note on the third cuboid conjecture. Part I, arXiv: 1203.2567[math.NT]

[56] Masharov A. A., Sharipov R. A., A strategy of numeric search for perfect cuboids in the case of the second cuboid conjecture, arXiv: 1504.07161[math.NT]

[57] Sharipov R. A., Reverse asymptotic estimates for roots of the cuboid characteristic equation in the case of the second cuboid conjecture, arXiv: 1505.00724[math.NT]

[58] Sharipov R. A., Asymptotic estimates for roots of the cuboid characteristic equation in the linear region, arXiv: 1505.02745[math.NT]

[59] Sharipov R. A., Asymptotic estimates for roots of the cuboid characteristic equation in the nonlinear region, arXiv: 1506.04705[math.NT]

[60] Sharipov R. A., Perfect cuboids and multisymmetric polynomials, arXiv: 1205.3135[math.NT]

[61] Sharipov R. A., On an ideal of multisymmetric polynomials associated with perfect cuboids, arXiv: 1206.6769[math.NT]

[62] Sharipov R. A., On the equivalence of cuboid equations and their factor equations, arXiv: 1207.2102[math.NT]

[63] Sharipov R. A., A biquadratic Diophantine equation associated with perfect cuboids, arXiv: 1207.4081[math.NT]

[64] Ramsden J. R., A general rational solution of an equation associated with perfect cuboids, arXiv: 1207.5339[math.NT]

[65] Ramsden J. R., Sharipov R. A., Inverse problems associated with perfect cuboids, arXiv: 1207.6764[math.NT]

[66] Sharipov R. A., On a pair of cubic equations associated with perfect cuboids, arXiv: 1208.0308[math.NT]

[67] Sharipov R. A., On two elliptic curves associated with perfect cuboids, arXiv: 1208.1227[math.NT]

[68] Ramsden J. R., Sharipov R. A., On singularities of the inverse problems associated with perfect cuboids, arXiv: 1208.1859[math.NT]

[69] Ramsden J. R., Sharipov R. A., On two algebraic parametrizations for rational solutions of the cuboid equations, arXiv: 1208.2587[math.NT]

[70] Sharipov R. A., A note on solutions of the cuboid factor equations, arXiv: 1209.0723[math.NT]

[71] Sharipov R. A., A note on rational and elliptic curves associated with the cuboid factor equations, arXiv: 1209.5706[math.NT]

[72] Ramsden J. R., Sharipov R. A., Two and three descent for elliptic curves associated with perfect cuboids, arXiv: 1303.0765[math.NT]

[73] Kaschenko I. S., Asimptoticheskie razlozheniya reshenii uravnenii, Izdanie YarGU, Yaroslavl, 2011

[74] Sharipov R. A., A note on invertible quadratic transformations of the real plane, arXiv: 1507.01861[math.AG]