On a new approach for studying asymptotic behavior of solutions to singular differential equations
Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 9-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we propose a new approach for studying the asymptotic behavior for large $x$ of the solutions to singular linear two-terms differential equations $$ -\frac{d^n}{dx^n}y(x,\lambda)+\lambda q(x)y(x,\lambda)=0 $$ with a potential $q(x)$ non-regular growing as $x\to\infty$. The idea of constructing the asymptotics for the solutions of singular linear differential equations and its effectiveness is demonstrated for 4th order equations with an oscillating potential.
Keywords: spectral theory of differential operators, asymptotic formulae for solutions to differential equations.
@article{UFA_2015_7_3_a1,
     author = {N. F. Valeev and E. A. Nazirova and Ya. T. Sultanaev},
     title = {On a~new approach for studying asymptotic behavior of solutions to singular differential equations},
     journal = {Ufa mathematical journal},
     pages = {9--14},
     year = {2015},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a1/}
}
TY  - JOUR
AU  - N. F. Valeev
AU  - E. A. Nazirova
AU  - Ya. T. Sultanaev
TI  - On a new approach for studying asymptotic behavior of solutions to singular differential equations
JO  - Ufa mathematical journal
PY  - 2015
SP  - 9
EP  - 14
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a1/
LA  - en
ID  - UFA_2015_7_3_a1
ER  - 
%0 Journal Article
%A N. F. Valeev
%A E. A. Nazirova
%A Ya. T. Sultanaev
%T On a new approach for studying asymptotic behavior of solutions to singular differential equations
%J Ufa mathematical journal
%D 2015
%P 9-14
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a1/
%G en
%F UFA_2015_7_3_a1
N. F. Valeev; E. A. Nazirova; Ya. T. Sultanaev. On a new approach for studying asymptotic behavior of solutions to singular differential equations. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 9-14. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a1/

[1] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 526 pp. | MR

[2] Kostyuchenko A. G., Sargsyan I. S., Raspredelenie sobstvennykh znachenii (samosopryazhennye obyknovennye differentsialnye operatory), Nauka, M., 1979, 400 pp. | MR

[3] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983, 354 pp. | MR

[4] Murtazin Kh. Kh., Sultanaev Ya. T., “K formulam raspredeleniya sobstvennykh chisel nepoluogranichennogo operatora Shturma–Liuvillya”, Matematicheskie zametki, 28:4 (1980), 545–553 | MR | Zbl

[5] N. F. Valeev, Ya. T. Sultanaev, “On the deficiency indices of a singular Sturm-Liouville operator with a rapidly oscillating perturbation”, Doklady Mathematics, 62:2 (2000), 271–273 | MR | Zbl

[6] Makina N. K., Nazirova E. A., Sultanaev Ya. T., “O metodakh issledovaniya asimptoticheskogo povedeniya singulyarnykh differentsialnykh uravnenii”, Matematicheskie zametki, 96:4 (2014), 627–632 | DOI | Zbl

[7] Valeev N. F., Nazirova E. A., Sultanaev Ya. T., “O raspredelenii sobstvennykh znachenii singulyarnykh differentsialnykh operatorov v prostranstve vektor-funktsii”, Tr. MMO, 75, no. 2, 2014, 107–123 | Zbl

[8] Sultanaev Ya. T., “Ob asimptotike spektra differentsialnogo operatora v prostranstve vektor-funktsii”, Dif. uravneniya, 10:9 (1974), 1673–1683 | MR | Zbl

[9] Ismagilov R. S., “Ob asimptotike spektra differentsialnogo operatora v prostranstve vektor-funktsii”, Mat. zametki, 9:6 (1971), 667–676 | MR | Zbl